AI Article Synopsis

  • Lignin, a key polymer in plant cell walls, can incorporate various phenolic monomers to improve biomass digestibility, and this study focuses on enhancing the incorporation of ferulate into lignin.
  • Researchers overexpressed the rice enzyme OsFMT1 in hybrid poplar, resulting in transgenic trees with increased levels of ferulate and other compounds in their lignin, which was verified through advanced spectroscopy and analysis.
  • The study concludes that OsFMT1 has superior substrate specificity and catalytic efficiency compared to a related enzyme, making it a promising candidate for improving the processing of lignocellulosic biomass.

Article Abstract

Background: The phenolic polymer lignin is one of the primary chemical constituents of the plant secondary cell wall. Due to the inherent plasticity of lignin biosynthesis, several phenolic monomers have been shown to be incorporated into the polymer, as long as the monomer can undergo radicalization so it can participate in coupling reactions. In this study, we significantly enhance the level of incorporation of monolignol ferulate conjugates into the lignin polymer to improve the digestibility of lignocellulosic biomass.

Results: Overexpression of a rice Feruloyl-CoA Monolignol Transferase (FMT), OsFMT1, in hybrid poplar (Populus alba x grandidentata) produced transgenic trees clearly displaying increased cell wall-bound ester-linked ferulate, p-hydroxybenzoate, and p-coumarate, all of which are in the lignin cell wall fraction, as shown by NMR and DFRC. We also demonstrate the use of a novel UV-Vis spectroscopic technique to rapidly screen plants for the presence of both ferulate and p-hydroxybenzoate esters. Lastly we show, via saccharification assays, that the OsFMT1 transgenic p oplars have significantly improved processing efficiency compared to wild-type and Angelica sinensis-FMT-expressing poplars.

Conclusions: The findings demonstrate that OsFMT1 has a broad substrate specificity and a higher catalytic efficiency compared to the previously published FMT from Angelica sinensis (AsFMT). Importantly, enhanced wood processability makes OsFMT1 a promising gene to optimize the composition of lignocellulosic biomass.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11246582PMC
http://dx.doi.org/10.1186/s13068-024-02544-yDOI Listing

Publication Analysis

Top Keywords

monolignol ferulate
8
cell wall
8
ferulate p-hydroxybenzoate
8
efficiency compared
8
lignin
5
osfmt1
5
enhancing monolignol
4
ferulate
4
ferulate conjugate
4
conjugate levels
4

Similar Publications

Mutants with simultaneous germline mutations were obtained in all three F5H genes and all three FAD2 genes (one to eleven mutated alleles) in order to improve the feed value of the seed meal and the fatty acid composition of the seed oil. In mutants with multiple mutated F5H alleles, sinapine in seed meal was reduced by up to 100%, accompanied by a sharp reduction in the S-monolignol content of lignin without causing lodging or stem break. A lower S-lignin monomer content in stems can contribute to improved stem degradability allowing new uses of stems.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on developing a more cost-effective biotechnological pathway to produce (-)-podophyllotoxin, a valuable compound used in chemotherapy, using recombinant E. coli strains instead of expensive natural sources like (+)-pinoresinol.
  • Researchers created a new toolbox for CRISPR/Cas9 to integrate genes directly into the E. coli chromosome, enabling simpler and more efficient multi-gene expression compared to traditional plasmid systems.
  • Experimental results showed that plasmid-free E. coli could achieve similar product yields of pinoresinol as plasmid-based systems, supporting the viability of this new approach for producing important plant lignans.
View Article and Find Full Text PDF

Background: Thinopyrum intermedium (Host) Barkworth & D.R. Dewey, or intermediate wheat grass (IWG), is being developed as the first widely-available perennial grain candidate.

View Article and Find Full Text PDF

Enhancing monolignol ferulate conjugate levels in poplar lignin via OsFMT1.

Biotechnol Biofuels Bioprod

July 2024

Department of Wood Science, Faculty of Forestry, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.

Article Synopsis
  • Lignin, a key polymer in plant cell walls, can incorporate various phenolic monomers to improve biomass digestibility, and this study focuses on enhancing the incorporation of ferulate into lignin.
  • Researchers overexpressed the rice enzyme OsFMT1 in hybrid poplar, resulting in transgenic trees with increased levels of ferulate and other compounds in their lignin, which was verified through advanced spectroscopy and analysis.
  • The study concludes that OsFMT1 has superior substrate specificity and catalytic efficiency compared to a related enzyme, making it a promising candidate for improving the processing of lignocellulosic biomass.
View Article and Find Full Text PDF

The agricultural sugarcane residues, bagasse and straws, can be used for second-generation ethanol (2GE) production by the cellulose conversion into glucose (saccharification). However, the lignin content negatively impacts the saccharification process. This polymer is mainly composed of guaiacyl (G), hydroxyphenyl (H), and syringyl (S) units, the latter formed in the ferulate 5-hydroxylase (F5H) branch of the lignin biosynthesis pathway.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!