This paper explores the photocatalytic degradation of Reactive Orange 16 (RO16) dye in textile wastewater employing a novel CuO@A-TiO/Ro-TiO nanocomposite. The nanocomposite was synthesized via a hydrothermal technique, resulting in a monoclinic phase of leaf-shaped CuO loaded on a hexagonal wurtzite structure of rod-shaped ZnO, as confirmed by FE-SEM and XRD analyses. Optical experiments revealed band gap energies of 1.99 eV for CuO, 2.19 eV for ZnO, and 3.34 eV for the CuO@A-TiO/Ro-TiO nanocomposite. Photocatalytic degradation experiments showcased complete elimination of a 100 mg/L RO16 solution (150 mL) after 120 min of UV light illumination and 100 min of sunlight illumination, emphasizing the nanocomposite's efficiency under both light sources. The study further delves into the application of the CuO@A-TiO/Ro-TiO nanocomposite for the degradation of actual textile wastewater samples under sunlight irradiation. The results underscore the nanocomposite's remarkable efficacy in treating RO16 in textile wastewater, positioning it as a promising candidate for sustainable and efficient wastewater treatment applications. This research contributes valuable insights into the development of advanced photocatalytic materials for textile dye degradation in wastewater treatment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11246457PMC
http://dx.doi.org/10.1038/s41598-024-63294-3DOI Listing

Publication Analysis

Top Keywords

textile wastewater
16
photocatalytic degradation
12
cuo@a-tio/ro-tio nanocomposite
12
degradation reactive
8
reactive orange
8
wastewater treatment
8
wastewater
6
degradation
5
textile
5
sustainable green
4

Similar Publications

Azo dyes constitute 60-70% of commercially used dyes and are complex, carcinogenic, and mutagenic pollutants that negatively impact soil composition, water bodies, flora, and fauna. Conventional azo dye degradation techniques have drawbacks such as high production and maintenance costs, use of hazardous chemicals, membrane clogging, and sludge generation. Constructed Wetland-Microbial Fuel Cells (CW-MFCs) offer a promising sustainable approach for the bio-electrodegradation of azo dyes from textile wastewater.

View Article and Find Full Text PDF

Electrospinning Membrane with Polyacrylate Mixed Beta-Cyclodextrin: An Efficient Adsorbent for Cationic Dyes.

Polymers (Basel)

January 2025

Institute of Textile Auxiliary and Ecological Dyeing Finishing, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China.

A simple and non-chemical binding nanofiber (-CD/PA) adsorbent was obtained by electrospinning a mixture of -cyclodextrin (-CD) and polyacrylate (PA). The cationic dyes in wastewater were removed by the host-guest inclusion complex of the -cyclodextrin and the electrostatic interaction between the polyacrylate and the dyes groups. The influence of the content of -cyclodextrin on the surface morphology and adsorption capacity of the nanofiber membrane was discussed, and the optimized adsorption capacity of nanofiber adsorption material was determined.

View Article and Find Full Text PDF

Tailoring amino-functionalized n-alkyl methacrylate ester-based bio-hybrids for adsorption of methyl orange dye: Controllable macromolecular architecture via polysaccharide-integrated ternary copolymerization.

Int J Biol Macromol

January 2025

Istanbul Technical University, Faculty of Science and Letters, Department of Chemistry, Soft Materials Research Laboratory, 34469, Maslak, Istanbul, Turkey. Electronic address:

Controllable macromolecular architecture formation via polysaccharide integrated ternary copolymerization was explored in the design of amino-functionalized n-alkyl methacrylate ester-based biohybrids. Ternary poly(dimethylaminoethyl methacrylate-co-glycidyl methacrylate-co-hydroxypropyl methacrylate)/sodium-alginate, PDGH/ALG, hybrids were designed using anionic polysaccharide through in-situ radical polymerization. An insight into the effect of ALG on physicochemical structure of ternary hybrids, particularly the interactions between polymeric chains, was created.

View Article and Find Full Text PDF

Large-Area Clay Composite Membranes with Enhanced Permeability for Efficient Dye/Salt Separation.

Membranes (Basel)

January 2025

Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, School of Energy & Power Engineering, Dalian University of Technology, Dalian 116024, China.

The escalating discharge of textile wastewater with plenty of dye and salt has resulted in serious environmental risks. Membranes assembled from two-dimensional (2D) nanomaterials with many tunable interlayer spacings are promising materials for dye/salt separation. However, the narrow layer spacing and tortuous interlayer transport channels of 2D-material-based membranes limit the processing capacity and the permeability of small salt ions for efficient dye/salt separation.

View Article and Find Full Text PDF

Membrane Treatment to Improve Water Recycling in an Italian Textile District.

Membranes (Basel)

January 2025

Department of Civil and Environmental Engineering, University of Florence, Via di Santa Marta 3, 50139 Firenze, Italy.

The textile district of Prato (Italy) has developed a wastewater recycling system of considerable scale. The reclaimed wastewater is characterized by high levels of hardness (32 °F on average), which precludes its direct reuse in numerous wet textile processes (e.g.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!