Edible insects are perceived as an incredible opportunity to mitigate the major challenge of sustainably producing healthy foods for a growing world population in the face of climate change uncertainties over the coming decade. In this study, we assessed the nutrient composition and sensory properties of Acheta domesticus, Apis mellifera, Gnathocera trivittata, Gryllotalpa africana, Imbrasia epimethea, Imbrasia oyemensis, Locusta migratoria, Macrotermes subhylanus, Nomadacris septemfasciata, Rhyncophorus phoenicis, Ruspolia differens and Rhynchophorus ferrugineus consumed in Eastern D. R. Congo. The investigated edible insects are highly appreciated and nutritious, with proteins (20.67-43.93 g/100 g) and fats (14.53-36.02 g/100 g) being the major macro-nutrients, proving their potential to improve diets through food enrichment. The high potassium (24-386.67 mg/100 g), sodium (152-257.82 mg/100 g), magnesium (32-64 mg/100 g), iron (5.3-16.13 mg/100 g), calcium (25-156.67 mg/100 g) and zinc (11-19.67 mg/100 g) content make the assessed edible insects a useful mineral-containing ingredient for preventing undernutrition in countries which are plagued by micronutrient deficiencies. A scatter plot of matrices and Pearson's correlations between sensory attributes and nutritional composition showed a negative correlation (r = - 0.45) between protein and appearance. While no strong correlation was observed between nutritional attributes and sensory acceptance, a positive correlation was observed between potassium and aroma (r = 0.50), after-taste (r = 0.50) and acceptability (r = 0.52). Principal component analysis results indicated that the two axes accounted for up to 97.4% of the observed variability in the nutrient composition and sensory attributes of commonly consumed edible insects in the Eastern D. R. Congo. Given the significant delicacy and nutritional potential of edible insects highlighted in this paper, households can rely on the latter to meet their nutritional needs rather than conventional livestock, thus contributing to environmental and financial security through local business opportunities.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11246483 | PMC |
http://dx.doi.org/10.1038/s41598-024-64078-5 | DOI Listing |
Food Sci Anim Resour
January 2025
Department of Animal Resources Science, Kongju National University, Yesan 32439, Korea.
With the exponential growth of the world population and the decline in agricultural production due to global warming, it is predicted that there will be an inevitable shortage of food and meat resources in the future. The global meat consumption, which reached 328 million tons in 2021, is expected to increase by about 70% by 2050, and the existing livestock industry, which utilizes limited resources, is having difficulty meeting the demand. Accordingly, cultured meat produced by culturing cells in the laboratory, edible insects consumed after cooking or processing, and plant-based meat processed by extracting proteins from plants have been proposed as sustainable food alternatives.
View Article and Find Full Text PDFJ Sci Food Agric
January 2025
Department of Chemistry, Faculty of Science and Technology, Rajamangala University of Technology Thanyaburi, Thailand.
Background: Edible insects are used for consumption and traditional medicine due to their rich bioactive compounds. This study examined the bioactive compounds and inhibitory effects of crude extracts from Bombyx mori and Omphisa fuscidentalis on α-glucosidase, α-amylase, acetylcholinesterase (AChE), and tyrosinase. Fatty acids, including n-hexadecanoic acid and oleic acid, were identified in the extracts and evaluated for their inhibitory potential against the enzymes in vitro and in silico.
View Article and Find Full Text PDFFoods
December 2024
Research and Development Center, Insilicogen Inc., Yongin 16954, Republic of Korea.
The increasing global population and the environmental consequences of meat consumption have led to the exploration of alternative sources of protein. Edible insects have gained attention as a sustainable and nutritionally rich meat alternative. We investigated the effects of two commonly consumed insects, larva and pupa, on beneficial gut microbiota growth, using whole 16s metagenome sequencing to assess diet-associated changes.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Experimental Allergology and Immunology, Medical University of Bialystok, Bialystok, Poland.
The European Commission authorized the use of dried yellow mealworm (Tenebrio molitor - TM) as a food ingredient under Regulation EU 2021/882. As TM emerges as an important allergen source, sensitization and allergy to TM in various populations need investigation. The aim of this study was to assess the incidence of sensitization to TM before its introduction as a food ingredient in Poland, as well as checking the occurrence of co-sensitivity to TM and other invertebrate allergenic extracts and molecules.
View Article and Find Full Text PDFFood Res Int
January 2025
Laboratory of Commodities and Territorial Analysis, Department of Economics and Law, University of Cassino and Southern Lazio, Via S. Angelo, Loc. Folcara, 03043 Cassino, (FR), Italy.
The potential use of edible insects as an alternative animal protein source has recently attracted a great deal of attention in Western countries. This is thanks to their numerous nutritional benefits, in particular in terms of vitamins and essential amino acids, and the need to guarantee food availability for the growing population. The aim of this scoping review is to analyse the current literature published in scientific journals regarding the main issues related to products containing edible insects, to map existing evidence and identify knowledge gaps.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!