A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Self-supervised learning for characterising histomorphological diversity and spatial RNA expression prediction across 23 human tissue types. | LitMetric

As vast histological archives are digitised, there is a pressing need to be able to associate specific tissue substructures and incident pathology to disease outcomes without arduous annotation. Here, we learn self-supervised representations using a Vision Transformer, trained on 1.7 M histology images across 23 healthy tissues in 838 donors from the Genotype Tissue Expression consortium (GTEx). Using these representations, we can automatically segment tissues into their constituent tissue substructures and pathology proportions across thousands of whole slide images, outperforming other self-supervised methods (43% increase in silhouette score). Additionally, we can detect and quantify histological pathologies present, such as arterial calcification (AUROC = 0.93) and identify missing calcification diagnoses. Finally, to link gene expression to tissue morphology, we introduce RNAPath, a set of models trained on 23 tissue types that can predict and spatially localise individual RNA expression levels directly from H&E histology (mean genes significantly regressed = 5156, FDR 1%). We validate RNAPath spatial predictions with matched ground truth immunohistochemistry for several well characterised control genes, recapitulating their known spatial specificity. Together, these results demonstrate how self-supervised machine learning when applied to vast histological archives allows researchers to answer questions about tissue pathology, its spatial organisation and the interplay between morphological tissue variability and gene expression.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11246527PMC
http://dx.doi.org/10.1038/s41467-024-50317-wDOI Listing

Publication Analysis

Top Keywords

rna expression
8
tissue
8
tissue types
8
vast histological
8
histological archives
8
tissue substructures
8
gene expression
8
expression
5
self-supervised
4
self-supervised learning
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!