The emergence of new infectious diseases poses a major threat to humans, animals, and broader ecosystems. Defining factors that govern the ability of pathogens to adapt to new host species is therefore a crucial research imperative. Pathogenic bacteria are of particular concern, given dwindling treatment options amid the continued expansion of antimicrobial resistance. In this review, we summarize recent advancements in the understanding of bacterial host species adaptation, with an emphasis on pathogens of humans and related mammals. We focus particularly on molecular mechanisms underlying key steps of bacterial host adaptation including colonization, nutrient acquisition, and immune evasion, as well as suggest key areas for future investigation. By developing a greater understanding of the mechanisms of host adaptation in pathogenic bacteria, we may uncover new strategies to target these microbes for the treatment and prevention of infectious diseases in humans, animals, and the broader environment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11308195 | PMC |
http://dx.doi.org/10.1093/femsre/fuae019 | DOI Listing |
Nat Chem Biol
January 2025
Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.
Directed evolution in mammalian cells offers a powerful approach for advancing synthetic biology applications. However, existing mammalian-based directed evolution methods face substantial bottlenecks, including host genome interference, small library size and uncontrolled mutagenesis. Here we engineered an orthogonal alphaviral RNA replication system to evolve RNA-based devices, enabling RNA replicase-assisted continuous evolution (REPLACE) in proliferating mammalian cells.
View Article and Find Full Text PDFPLoS Comput Biol
January 2025
Genesupport, Avenue de Sévelin 18, Lausanne, Switzerland.
Catalysis and specifically autocatalysis are the quintessential building blocks of life. Yet, although autocatalytic networks are necessary, they are not sufficient for the emergence of life-like properties, such as replication and adaptation. The ultimate and potentially fatal threat faced by molecular replicators is parasitism; if the polymerase error rate exceeds a critical threshold, even the fittest molecular species will disappear.
View Article and Find Full Text PDFThe prevalence of young people with at least one parent from a migrant background is increasing. These families deal with the complexities of navigating between cultures. This challenges patients and mental health workers in their aim to find a culturally sensitive approach.
View Article and Find Full Text PDFISME Commun
January 2024
Department of Biological Sciences, Ajou University, Suwon 16499, Republic of Korea.
Bacterial species adapt to cold environments with diverse molecular mechanisms enabling their growth under low ambient temperature. The emergence of cold-adapted species at macro-evolutionary scale, however, has not been systematically explored. In this study, we performed phylogenetic analysis on the growth temperature traits in the genera that occupy broad environmental and host niches and contain known cold-adapted species.
View Article and Find Full Text PDFSci Rep
January 2025
NASA Ames Research Center, Planetary Systems Branch, Moffett Field, CA, USA.
As we assess the habitability of other worlds, we are limited by being able to only study terrestrial life adapted to terrestrial conditions. The environments found on Earth, though tremendously diverse, do not approach the multitude of potentially habitable environments beyond Earth, and so limited terrestrial adaptive capabilities tell us little about the fundamental biochemical boundaries of life. One approach to this problem is to use experimental laboratory evolution to adapt microbes to these novel environmental conditions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!