Immobilization of laccase on magnetic PEGDA-CS inverse opal hydrogel for enhancement of bisphenol A degradation in aqueous solution.

J Environ Sci (China)

Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Science, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.

Published: January 2025

Endocrine disruptors such as bisphenol A (BPA) adversely affect the environment and human health. Laccases are used for the efficient biodegradation of various persistent organic pollutants in an environmentally safe manner. However, the direct application of free laccases is generally hindered by short enzyme lifetimes, non-reusability, and the high cost of a single use. In this study, laccases were immobilized on a novel magnetic three-dimensional poly(ethylene glycol) diacrylate (PEGDA)-chitosan (CS) inverse opal hydrogel (LAC@MPEGDA@CS@IOH). The immobilized laccase showed significant improvement in the BPA degradation performance and superior storage stability compared with the free laccase. 91.1% of 100 mg/L BPA was removed by the LAC@MPEGDA@CS@IOH in 3 hr, whereas only 50.6% of BPA was removed by the same amount of the free laccase. Compared with the laccase, the outstanding BPA degradation efficiency of the LAC@MPEGDA@CS@IOH was maintained over a wider range of pH values and temperatures. Moreover, its relative activity of was maintained at 70.4% after 10 cycles, and the system performed well in actual water matrices. This efficient method for preparing immobilized laccases is simple and green, and it can be used to further develop ecofriendly biocatalysts to remove organic pollutants from wastewater.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jes.2023.10.017DOI Listing

Publication Analysis

Top Keywords

inverse opal
8
opal hydrogel
8
organic pollutants
8
bpa degradation
8
free laccase
8
bpa removed
8
bpa
5
immobilization laccase
4
laccase magnetic
4
magnetic pegda-cs
4

Similar Publications

The applications of nanomaterials in regenerative medicine encompass a broad spectrum. The functional nanomaterials, such as Prussian blue and its derivative nanoparticles, exhibit potent anti-inflammatory and antioxidant properties. By combining it with the corresponding scaffold carrier, the fusion of nanomaterials and biotherapy can be achieved, thereby providing a potential avenue for clinical treatment.

View Article and Find Full Text PDF

Cyclin-dependent kinase 4/6 inhibitors (CDKIs) in combination with endocrine therapy (ET) are the standard-of-care in the first-line treatment of HR-positive, HER2-negative metastatic breast cancer. In the absence of direct head-to-head trials comparing the efficacy and safety of the different CDKIs, the individual choice of treatment in everyday practice is complex. Inverse probability of treatment weighting was used to emulate a head-to-head comparison of palbociclib +ET (PALBO) and ribociclib +ET (RIBO) in patients recruited into the prospective, observational, multicenter registry platform OPAL (NCT03417115).

View Article and Find Full Text PDF

Multiphase Janus Azobenzene Inverse Opal Membrane toward On-Demand Photocontrolled Motion.

ACS Appl Mater Interfaces

January 2025

Key Laboratory of Bio-inspired Materials and Interfaces Sciences, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.

Azobenzene actuators have generated extensive research investment in the field of soft robots, artificial muscles, etc., based on the typical photoresponsive - isomerization. However, it remains challenging to achieve multiphase actuation at the gas-liquid interface and liquid phase.

View Article and Find Full Text PDF

Improving Visible Light Photocatalysis Using Optical Defects in CoO-TiO Photonic Crystals.

Materials (Basel)

December 2024

Section of Condensed Matter Physics, Department of Physics, National and Kapodistrian University of Athens, University Campus, 15784 Athens, Greece.

The rational design of photonic crystal photocatalysts has attracted significant interest in order to improve their light harvesting and photocatalytic performances. In this work, an advanced approach to enhance slow light propagation and visible light photocatalysis is demonstrated for the first time by integrating a planar defect into CoO-TiO inverse opals. Trilayer photonic crystal films were fabricated through the successive deposition of an inverse opal TiO underlayer, a thin titania interlayer, and a photonic top layer, whose visible light activation was implemented through surface modification with CoO nanoscale complexes.

View Article and Find Full Text PDF

Photonic Band Gap Engineering by Varying the Inverse Opal Wall Thickness.

Int J Mol Sci

December 2024

Institute of Physical Metallurgy, Metal Forming and Nanotechnology, University of Miskolc, H-3515 Miskolc, Hungary.

We demonstrate the band gap programming of inverse opals by fabrication of different wall thickness by atomic layer deposition (ALD). The opal templates were synthesized using polystyrene and carbon nanospheres by the vertical deposition method. The structure and properties of the TiO inverse opal samples were investigated using Scanning Electron Microscope (SEM) and Focused Ion Beam Scanning Electron Microscopy (FIB-SEM), Energy Dispersive X-ray analysis (EDX), X-ray Diffraction (XRD) and Finite Difference Time Domain (FDTD) simulations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!