Microbially induced carbonate precipitation (MICP) is a promising technique for remediating heavy metal-contaminated soils. However, the effectiveness of MICP in immobilizing Cd in alkaline calcareous soils, especially when applied in agricultural soils, remains unclear. Biochar and magnesium oxide are two environmentally friendly passivating materials, and there are few reports on the combined application of MICP with passivating materials for remediating heavy metal-contaminated soils. Additionally, the number of treatments with MICP cement and the concentration of calcium chloride during the MICP process can both affect the effectiveness of heavy metal immobilization by MICP. Therefore, we conducted MICP and MICP-biochar-magnesium oxide treatments on agricultural soils collected from Baiyin, Gansu Province (pH = 8.62), and analyzed the effects of the number of treatments with cement and the concentration of calcium chloride on the immobilization of Cd by MICP and combined treatments. The results showed that early-stage MICP could immobilize exchangeable cadmium and increase the residual cadmium content, especially with high-concentration calcium chloride MICP treatment. However, in the later stage, soil nitrification and exchange processes led to the dissolution of carbonate-bound cadmium and cadmium activation. The fixing effect of MICP influence whether the MICP-MgO-biochar is superior to the MgO-biochar. Four treatments with cement were more effective than single treatment in MICP-biochar-magnesium oxide treatment, and the MICP-biochar-magnesium oxide treatment with four treatments was the most effective, with passivation rates of 40.7% and 46.6% for exchangeable cadmium and bioavailable cadmium, respectively. However, attention should be paid to the increase in soil salinity. The main mechanism of MICP-magnesium oxide-biochar treatment in immobilizing cadmium was the formation of Cd(OH), followed by the formation of cadmium carbonate.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envpol.2024.124537DOI Listing

Publication Analysis

Top Keywords

calcium chloride
12
micp-biochar-magnesium oxide
12
micp
11
cadmium
9
biochar magnesium
8
magnesium oxide
8
microbially induced
8
induced carbonate
8
remediating heavy
8
heavy metal-contaminated
8

Similar Publications

Sweet potato ( (L.) Lam.) is a tuber root crop with high economical potential and China is responsible for harvesting roughly 70% of the world production.

View Article and Find Full Text PDF

Endothelial TRIM35-Regulated MMP10 Release Exacerbates Calcification of Vascular Grafts.

Adv Sci (Weinh)

January 2025

Clinical Research Center, Postdoctoral Station of Clinical Medicine, The Third Xiangya Hospital, Central South University, Changsha, 410013, P. R. China.

Vascular calcification is a highly regulated process in cardiovascular disease (CVD) and is strongly correlated with morbidity and mortality, especially in the adverse stage of vascular remodeling after coronary artery bypass graft surgery (CABG). However, the pathogenesis of vascular graft calcification, particularly the role of endothelial-smooth muscle cell interaction, is still unclear. To test how ECs interact with SMCs in artery grafts, single-cell analysis of wild-type mice is first performed using an arterial isograft mouse model and found robust cytokine-mediated signaling pathway activation and SMC proliferation, together with upregulated endothelial tripartite motif 35 (TRIM35) expression.

View Article and Find Full Text PDF

Surface water chemistry of the River Ganga at Varanasi was analyzed at 10 locations over 3 years (2019-2021) across pre-monsoon, monsoon, and post-monsoon seasons. The study aimed to assess water parameters using principal component analysis (PCA), calculate the water quality index (WQI), determine processes governing water chemistry, evaluate irrigation suitability, and estimate non-carcinogenic health risks. The physical parameters measured included pH (8.

View Article and Find Full Text PDF

One-step high-pressure and high-temperature direct aqueous mineral carbonation of tailings derived from mining of Platinum Group Metals in South Africa requires a fundamental understanding of the reactivity of the most dominant mineral phases, i.e. pyroxene and plagioclase (66 wt.

View Article and Find Full Text PDF

Alginate Hydrogel Beads with a Leakproof Gold Shell for Ultrasound-Triggered Release.

Pharmaceutics

January 2025

Department of Biomedical Engineering, University of Minnesota, 7-105 Hasselmo Hall, 312 Church Street SE, Minneapolis, MN 55455, USA.

Focused ultrasound has advantages as an external stimulus for drug delivery as it is non-invasive, has high precision and can penetrate deep into tissues. Here, we report a gold-plated alginate (ALG) hydrogel system that retains highly water-soluble small-molecule fluorescein for sharp off/on release after ultrasound exposure. The ALG is crosslinked into beads with calcium chloride and layered with a polycation to adjust the surface charge for the adsorption of catalytic platinum nanoparticles (Pt NPs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!