A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Harmful Ostreopsis cf. ovata blooms could extend in time span with climate change in the Western Mediterranean Sea. | LitMetric

Harmful Ostreopsis cf. ovata blooms could extend in time span with climate change in the Western Mediterranean Sea.

Sci Total Environ

Sorbonne Université, CNRS, Laboratoire d'Océanographie de Villefranche, Villefranche-sur-Mer, France.

Published: October 2024

Fast environmental changes and high coastal human pressures and impacts threaten the Mediterranean Sea. Over the last decade, recurrent blooms of the harmful dinoflagellate Ostreopsis cf. ovata have been recorded in many Mediterranean beaches. These microalgae produce toxins that affect marine organisms and human health. Understanding the environmental conditions that influence the appearance and magnitude of O. cf. ovata blooms, as well as how climate change will modify its future distribution and dynamics, is crucial for predicting and managing their effects. This study investigates whether the spatio-temporal distribution of this microalga and the frequency of its blooms could be altered in future climate change scenarios in the Mediterranean Western basin. For the first time, an ecological habitat model (EHM) is forced by physico-chemical climate change simulations at high-resolution, under the strong greenhouse gas emission trajectory (RCP8.5). It allows to characterize how O. cf. ovata may respond to projected conditions and how its distribution could shift over a wide spatial scale, in this plausible future. Before being applied to the EHM, future climate simulations are further refined by using a statistical adaptation method (Cumulative Distribution Function transform) to improve the predictions robustness. Temperature (optimum 23-26 °C), high salinity (>38 psu) and high inorganic nutrient concentrations (nitrate >0.25 mmol N·m and phosphate >0.035 mmol P·m) drive O. cf. ovata abundances. High spatial disparities in future abundances are observed. Namely, O. cf. ovata abundances could increase on the Mediterranean coasts of France, Spain and the Adriatic Sea while a decrease is expected in the Tyrrhenian Sea. The bloom period could be extended, starting earlier and continuing later in the year. From a methodological point of view, this study highlights best practices of EHMs in the context of climate change to identify sensitive areas for current and future harmful algal blooms.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2024.174726DOI Listing

Publication Analysis

Top Keywords

climate change
20
ostreopsis ovata
8
ovata blooms
8
mediterranean sea
8
future climate
8
ovata abundances
8
ovata
6
climate
6
future
6
blooms
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!