Mechanomemory of nucleoplasm and RNA polymerase II after chromatin stretching by a microinjected magnetic nanoparticle force.

Cell Rep

The Institute for Mechanobiology, Northeastern University, Boston, MA 02115, USA; Department of Bioengineering, College of Engineering, Northeastern University, Boston, MA 02115, USA. Electronic address:

Published: July 2024

Increasing evidence suggests that the mechanics of chromatin and nucleoplasm regulate gene transcription and nuclear function. However, how the chromatin and nucleoplasm sense and respond to forces remains elusive. Here, we employed a strategy of applying forces directly to the chromatin of a cell via a microinjected 200-nm anti-H2B-antibody-coated ferromagnetic nanoparticle (FMNP) and an anti-immunoglobulin G (IgG)-antibody-coated or an uncoated FMNP. The chromatin behaved as a viscoelastic gel-like structure and the nucleoplasm was a softer viscoelastic structure at loading frequencies of 0.1-5 Hz. Protein diffusivity of the chromatin, nucleoplasm, and RNA polymerase II (RNA Pol II) and RNA Pol II activity were upregulated in a chromatin-stretching-dependent manner and stayed upregulated for tens of minutes after force cessation. Chromatin stiffness increased, but the mechanomemory duration of chromatin diffusivity decreased, with substrate stiffness. These findings may provide a mechanomemory mechanism of transcription upregulation and have implications on cell and nuclear functions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11289711PMC
http://dx.doi.org/10.1016/j.celrep.2024.114462DOI Listing

Publication Analysis

Top Keywords

chromatin nucleoplasm
12
nucleoplasm rna
8
rna polymerase
8
chromatin
8
rna pol
8
mechanomemory nucleoplasm
4
rna
4
polymerase chromatin
4
chromatin stretching
4
stretching microinjected
4

Similar Publications

The genus Pelomyxa includes 15 species of anaerobic Archamoebae with remarkable diverse nucleoplasm morphology. Nuclear structures, like chromatin and nucleoli, of several members of the genus was previously identified only based on their ultrastructural similarity to typical structures of somatic cells of higher eukaryotes. Here, we explored an easy-to-use, one-step intravital staining method with DAPI and pyronin to distinguish between DNA and RNA structures in nuclei of unfixed cells of Pelomyxa belevskii and P.

View Article and Find Full Text PDF

Pushing the envelope - How the genome interacts with the nuclear envelope in health and disease.

Adv Protein Chem Struct Biol

January 2025

Genome Organisation and Dynamics Cluster, Center for Genome Engineering and Maintenance, Division of Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, London, United Kingdom. Electronic address:

The nuclear envelope has for long been considered more than just the physical border between the nucleoplasm and the cytoplasm, emerging as a crucial player in genome organisation and regulation within the 3D nucleus. Consequently, its study has become a valuable topic in the research of cancer, ageing and several other diseases where chromatin organisation is compromised. In this chapter, we will delve into its several sub-elements, such as the nuclear lamina, nuclear pore complexes and nuclear envelope proteins, and their diverse roles in nuclear function and maintenance.

View Article and Find Full Text PDF

Role of lamins in cellular physiology and cancer.

Adv Protein Chem Struct Biol

January 2025

Department of Medical Oncology (Lab), Dr. B.R. Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India. Electronic address:

Lamins, which are crucial type V intermediate filament proteins found in the nuclear lamina, are essential for maintaining the stability and function of the nucleus in higher vertebrates. They are classified into A- and B-types, and their distinct expression patterns contribute to cellular survival, development, and functionality. Lamins emerged during the transition from open to closed mitosis, with their complexity increasing alongside organism evolution.

View Article and Find Full Text PDF

The nuclear pore complex (NPC), a multisubunit complex located within the nuclear envelope, regulates RNA export and the import and export of proteins. Here we address the role of the NPC in driving thermal stress-induced 3D genome repositioning of () genes in yeast. We found that two nuclear basket proteins, Mlp1 and Nup2, although dispensable for NPC integrity, are required for driving genes into coalesced chromatin clusters, consistent with their strong, heat shock-dependent recruitment to gene regulatory and coding regions.

View Article and Find Full Text PDF

Nuclear speckles are membraneless organelles that associate with active transcription sites and participate in post-transcriptional mRNA processing. During the cell cycle, nuclear speckles dissolve following phosphorylation of their protein components. Here, we identify the PP1 family as the phosphatases that counteract kinase-mediated dissolution.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!