This paper proposes a high-accuracy EEG-based schizophrenia (SZ) detection approach. Unlike comparable literature studies employing conventional machine learning algorithms, our method autonomously extracts the necessary features for network training from EEG recordings. The proposed model is a ten-layered CNN that contains a max pooling layer, a Global Average Pooling layer, four convolution layers, two dropout layers for overfitting prevention, and two fully connected layers. The efficiency of the suggested method was assessed using the ten-fold-cross validation technique and the EEG records of 14 healthy subjects and 14 SZ patients. The obtained mean accuracy score was 99.18 %. To confirm the high mean accuracy attained, we tested the model on unseen data with a near-perfect accuracy score (almost 100 %). In addition, the results we obtained outperform numerous other comparable works.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.schres.2024.07.015 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!