Synergistic enhancement of cadmium immobilization and soil fertility through biochar and artificial humic acid-assisted microbial-induced calcium carbonate precipitation.

J Hazard Mater

College of Engineering, Northeast Agricultural University, Harbin, China; International Cooperation Joint Laboratory of Health in Cold Region Black Soil Habitat of the Ministry of Education, China. Electronic address:

Published: September 2024

Microbially induced carbonate precipitation (MICP) is emerging as a favorable alternative to traditional soil remediation techniques for heavy metals, primarily due to its environmental friendliness. However, a significant challenge in using MICP for farmland is not only to immobilize heavy metals but also to concurrently enhance soil fertility. This study explores the innovative combination of artificial humic acid (A-HA), biochar (BC), and Sporosarcina pasteurii (S. pasteurii) to mitigate the bioavailability of cadmium (Cd) in contaminated agricultural soils through MICP. X-ray diffraction (XRD) and scanning electron microscope (SEM) analyses revealed that the integration of BC and A-HA significantly enhances Cd immobilization efficiency by co-precipitating with CaCO. Moreover, this treatment also improved soil fertility and ecological functions, as evidenced by increases in total nitrogen (TN, 9.0-78.2 %), alkaline hydrolysis nitrogen (AN, 259.7-635.5 %), soil organic matter (SOM, 18.1-27.9 %), total organic carbon (TOC, 43.8-48.8 %), dissolved organic carbon (DOC, 36.0-88.4 %) and available potassium (AK, 176.2-193.3 %). Additionally, the relative abundance of dominant phyla such as Proteobacteria and Firmicutes significantly increased with the introduction of BC and A-HA in MICP. Consequently, the integration of BC and A-HA with MICP offers a promising solution for remediating Cd-contaminated agricultural soil and synergistically enhancing soil fertility.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2024.135140DOI Listing

Publication Analysis

Top Keywords

soil fertility
16
artificial humic
8
carbonate precipitation
8
heavy metals
8
integration a-ha
8
organic carbon
8
a-ha micp
8
soil
7
micp
5
synergistic enhancement
4

Similar Publications

Terrestrial ecosystems have vital impacts on soil carbon sequestration, but under disturbances from anthropogenic activities, the typical indicator combinations of SOC distribution in coastal areas remain unclear. On the basis of surface soil sampling and calculations of related eco-environmental indices in the Yellow River Delta (YRD), we performed geostatistical analysis combined with Spearman's correlation analysis, principal component analysis (PCA), and hierarchical clustering analysis (HCA) to explore the spatial heterogeneity of soil organic carbon (SOC) and influential spatiotemporal factors. Overall, the results revealed that in the seaward direction of the Yellow River, the SOC concentration decreased from west to east, with a low mean value of 5.

View Article and Find Full Text PDF

The study explores the structural and functional dynamics of rhizospheric bacterial diversity in the Pranmati basin, focusing on their ecological significance, diversity, and functional roles across dominant vegetation types; Rhododendron arboreum, Myrica esculenta, and Quercus leucotrichophora. The research provides critical insights into soil health and ecosystem functioning by analysing rhizospheric soil properties among the selected vegetations. The research findings reveal that Myrica esculenta exhibits the highest root colonization (95.

View Article and Find Full Text PDF

Increasing soil organic carbon (SOC) in agricultural systems is a primary nature-based option for mitigating climate change, improving soil fertility, and ensuring food security. However, the consequences of global warming and increases in carbon inputs on cropland SOC stocks over the last few decades remain largely unknown, particularly in deeper soil layers. Here, by using repeated measurements, we reassess variations in SOC stocks across a 0 to 100 cm soil profile at the same locations in China's upland croplands in 1980 and 2023.

View Article and Find Full Text PDF

Balanced nutrition will be rewarding to profitable and sustainable yield of Kodo millet. In this context, soil test crop response (STCR) experiments on kodo millet were conducted from 2020 to 2022 to assess relationships between yield, soil, plant, and fertilizer nitrogen (N), phosphorus (P), and potassium (K) and calibrate optimum nutrient doses for attaining yield targets. The Basic parameters, i.

View Article and Find Full Text PDF

Effects of saffron-grape intercropping on saffron flower number and rhizosphere microbial community.

BMC Microbiol

December 2024

TCM (Traditional Chinese Medicine), Huzhou Central Hospital, Key Laboratory Cultivation Base of Zhejiang Province for the Development and Clinical Transformation of Immunomodulatory Drugs, Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Huzhou, Zhejiang, China.

Background: Saffron (Crocus sativus L.) is a valuable herb. With the increasing demand for saffron, people are starting to focus on how to increase its yields.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!