Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Control of algal blooms and associated biologically-induced water quality risks in drinking reservoirs is problematic. Copper sulphate (CuSO) treatment is one intervention that has been utilised for >100 years. Evidence indicates a favourable short-term reduction in Cyanobacterial biomass (e.g. bloom termination), but here we indicate that it may also increase longer-term water quality risk. In 2022, we investigated the impacts of CuSO spraying on Cyanobacterial communities and nutrient levels within a drinking water supply reservoir using environmental DNA (eDNA) to assess community shifts, alongside monitoring nutrient fractions, orthophosphate (OP) and total phosphate (TP), post-treatment. CuSO application successfully reduced Cyanobacterial abundance, however elimination of Cyanobacteria resulted in a shift in bacterial dominance favouring Planctomycetota throughout the summer and a combination of Actinobacteriota and Verrucomicrobiota, throughout autumn. As Cyanobacterial abundance recovered post-treatment, Cyanobacterial genera demonstrated greater diversity compared to only three Cyanobacterial genera present across samples pre-treatment, and included taxa associated with water quality risk (e.g. taste and odour (T&O) metabolite and toxin producers). The increase in Cyanobacteria post-treatment was attributed to an increase in biologically available nutrients, primarily a significant increase in OP. Overall, findings suggest that the significant shift in biodiversity likely induces a less stable ecosystem with greater plasticity of response to changing environmental and biogeochemical variables. Legacy implications of CuSO spraying, in terms of shifts in ecosystem and nutrient balance over time, may have implications for drinking water quality, but importantly also for reservoir management options. As such, the effects of CuSO spraying should be considered carefully before consideration as a contender for in-reservoir biological control.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jenvman.2024.121828 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!