Objectives: Celastrol has widespread therapeutic applications in various pathological conditions, including chronic inflammation. Previous studies have demonstrated the potent cardioprotective effects of celastrol. Nevertheless, limited attention has been given to its potential in reducing ventricular arrhythmias (VAs) following myocardial infarction (MI). Hence, this study aimed to elucidate the potential mechanisms underlying the regulatory effects of celastrol on VAs and cardiac electrophysiological parameters in rats after MI.
Methods: Sprague-Dawley rats were divided at random: the sham, MI, and MI + celastrol groups. The left coronary artery was occluded in the MI and MI + Cel groups. Electrocardiogram, heart rate variability (HRV), ventricular electrophysiological parameters analysis, histology staining of ventricles, Enzyme-linked immunosorbent assay (ELISA), western blotting and Quantitative real-time polymerase chain reaction (qRT-PCR) were performed to elucidate the underlying mechanism of celastrol. Besides, H9c2 cells were subjected to hypoxic conditions to create an in vitro model of MI and then treated with celastrol for 24 hours. Nigericin was used to activate the NLRP3 inflammasome.
Results: Compared with that MI group, cardiac electrophysiology instability was significantly alleviated in the MI + celastrol group. Additionally, celastrol improved HRV, upregulated the levels of Cx43, Kv.4.2, Kv4.3 and Cav1.2, mitigated myocardial fibrosis, and inhibited the NLRP3 inflammasome pathway. In vitro conditions also supported the regulatory effects of celastrol on the NLRP3 inflammasome pathway.
Conclusions: Celastrol could alleviate the adverse effects of VAs after MI partially by promoting autonomic nerve remodeling, ventricular electrical reconstruction and ion channel remodeling, and alleviating ventricular fibrosis and inflammatory responses partly by through inhibiting the NLRP3/Caspase-1/IL-1β pathway.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biopha.2024.117121 | DOI Listing |
Zhongguo Zhong Yao Za Zhi
December 2024
Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences Beijing 100700, China.
This study aimed to investigate the potential role of Colquhounia Root Tablets against bone destruction in rheumatoid arthritis(RA) and its molecular mechanism. The study used ultra-performance liquid chromatography-mass spectrometry to analyze the major components of Colquhounia Root Tablets and predicted its candidate target gene set based on the major components. The key targets of RA bone destruction were obtained through GeneCards and the Database of Genetics and Medical Literature(OMIM), protein-protein interaction(PPI) network was constructed, and the key targets were identified by topological analysis.
View Article and Find Full Text PDFPhytomedicine
January 2025
Department of Gastroenterology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China. Electronic address:
Background: Celastrol was recently identified as a potential treatment for obesity and hepatic steatosis. However, whether Celastrol effectively suppresses the nonalcoholic fatty liver disease (NAFLD) stage remains unknown. This study aimed to evaluate the role of Celastrol in the progression from simple steatosis to nonalcoholic steatohepatitis (NASH) and fibrosis.
View Article and Find Full Text PDFPharm Biol
December 2025
Shanghai Health Commission Key Lab of Artificial Intelligence (AI)-Based Management of Inflammation and Chronic Diseases, Department of Central Laboratory, Gongli Hospital of Shanghai Pudong New Area, Shanghai, China.
Context: Celastrol, acknowledged as a prominent exemplar of the potential for transforming traditional medicinal compounds into contemporary pharmaceuticals, has garnered considerable attention owing to its extensive pharmacological activities. The increasing volume of publications concerning celastrol highlights its importance in current scientific inquiry. Despite the growing interest in this compound, a bibliometric analysis focused on this subject remains to be undertaken.
View Article and Find Full Text PDFBioorg Med Chem
February 2025
Key Laboratory of Medical Laboratory Diagnostics of the Education Ministry, College of Laboratory Medicine, Chongqing Medical University, No. 1, Yixueyuan Road, Yuzhong Dist, Chongqing 400016, China. Electronic address:
Acetohydroxy acid synthase (AHAS) is a key enzyme that catalyzes the synthesis of branched-chain amino acids, which is indispensable for the survival and growth of Mycobacterium tuberculosis (Mtb). Aim to discover new AHAS inhibitors from natural products, here we performed computer assistant target-based screening for Mtb-AHAS inhibitors using Discovery Studio on TCMSP and SELLECK libraries. Mtb-AHAS structure was first simulated and verified for docking, and 80 compounds with top LIBDOCK and CDDOCK scores were obtained.
View Article and Find Full Text PDFNaunyn Schmiedebergs Arch Pharmacol
December 2024
Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
One of the most common microvascular effects of diabetes mellitus (DM) that may result in end-stage renal failure is diabetic kidney disease (DKD). Current treatments carry a substantial residual risk of disease progression regardless of treatment. By modulating various molecular targets, pentacyclic triterpenoid celastrol has been found to possess curative properties in the treatment of diabetes and other inflammatory diseases.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!