Concentrations of microplastics (MPs) were determined in three commonly used zebrafish housing systems to see if their levels could affect the final results of laboratory microplastic-related toxicology tests. MPs have received notable attention in the last few years, and their toxicology tests have also come to the fore. Zebrafish (Danio rerio), kept in fish housing systems, are widely used as models for MPs studies. Most of these systems contain a significant number of parts made of different polymers. As usage and amortization can erode these parts, MPs might appear in the keeping water or the fish body, which may represent a background load and possibly influence the results of microplastic-related toxicological tests. To take representative water samples from systems, two in-situ filtration techniques, a newly developed peristaltic pump-, and a jet pump-driven method were applied. The collected MP particles were analyzed with a Fourier-transform infrared microscope (detection limit 50 μm), and their possible origin was also investigated. The newly developed technique was more sufficient for sampling as it had a higher MPs recovery, especially in the smaller size range. Polyester, polyethylene and polypropylene were the most frequently detected polymers in the examined fish housing systems, the highest detected concentration was 0.31±0.12 particles/liter (0.22±0.16 μg/liter). These values are negligible compared to the literature data reporting enormously high applied MPs concentrations (10 - 2.21 × 10 particles/liter) during toxicology tests. The results also show that some detected MPs did not originate from the systems, their origin was presumed to be external.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.aquatox.2024.107020DOI Listing

Publication Analysis

Top Keywords

housing systems
16
toxicology tests
12
zebrafish housing
8
affect final
8
microplastic-related toxicological
8
fish housing
8
newly developed
8
systems
7
mps
7
detection microplastics
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!