A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Photochemical transformation of liquid crystal monomers in simulated environmental media: Kinetics, mechanism, toxicity variation and QSAR modeling. | LitMetric

Photochemical transformation of liquid crystal monomers in simulated environmental media: Kinetics, mechanism, toxicity variation and QSAR modeling.

Water Res

Engineering Laboratory for Water Pollution Control and Resources Recovery, State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, 130117, China. Electronic address:

Published: September 2024

Liquid crystal monomers (LCMs) are a new class of emerging pollutants with high octanol-water partition coefficients; however, their transformation behavior and associated risk to environments with high organic matter content has rarely been reported. In this study, we investigated the photodegradation kinetics, mechanism, and toxicity variation of 23 LCMs on leaf wax models (e.g., organic solvents methanol and n-hexane). The order of the photolysis rates of these LCMs were biphenylethyne LCMs > phenylbenzoate LCMs > diphenyl/terphenyl LCMs under simulated sunlight, while the phenylcyclohexane LCMs were resistant to photodegradation. The phenylbenzoate and biphenylethyne LCMs mainly undergo direct photolysis, while the diphenyl/terphenyl LCMs mainly undergo self-sensitized photolysis. The main photolysis pathways are the cleavage of ester bonds for phenylbenzoate LCMs, the addition, oxidation and cleavage of alkynyl groups for biphenylethyne LCMs, and the cleavage/oxidation of chains attached to phenyls and the benzene ring opening for diphenyl/terphenyls LCMs. Most photolysis products remained toxic to aquatic organisms to some degree. Additionally, two quantitative structure-activity relationship models for predicting k of LCMs in methanol and n-hexane were developed, and employed to predict k of 93 LCMs to fill the k data gap in systems mimicking leaf surfaces. These results can be helpful for evaluating the fate and risk of LCMs in environments with high content of organic phase.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.watres.2024.122062DOI Listing

Publication Analysis

Top Keywords

lcms
15
biphenylethyne lcms
12
liquid crystal
8
crystal monomers
8
kinetics mechanism
8
mechanism toxicity
8
toxicity variation
8
environments high
8
methanol n-hexane
8
phenylbenzoate lcms
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!