Human existence and the long-term viability of society depend on agriculture. Overuse of synthetic fertilizers results in increased contamination of the land, water, and atmosphere as well as financial constraints. In today's modern agriculture, environmentally friendly technology is becoming more and more significant as a substitute for conventional fertilizers and chemical pesticides. Using nanotechnology, agricultural output can be improved in terms of quality, biological support, financial stability, and environmental safety. There is a lot of promise for the sustainable application of nano-fertilizers in crop productivity and soil fertility, with little or no negative environmental effects. In this context, the present review provided an overview of the benefits of using nanofertilizers, its application and types. Mechanistic approach for increasing soil fertility and yield via nanofertilizers also described in detail. We concluded this article to compare the advantages of nanofertilizers over chemicals and nano-chemicals. Nonetheless, additional investigation is required to comprehend the effects and possible hazards of nanomaterials in the food production chain.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jplph.2024.154305DOI Listing

Publication Analysis

Top Keywords

soil fertility
8
small molecule
4
molecule big
4
big impacts
4
impacts nano-nutrients
4
nano-nutrients sustainable
4
sustainable agriculture
4
agriculture food
4
food security
4
security human
4

Similar Publications

Smallest microplastics intensify maize yield decline, soil processes and consequent global warming potential.

J Hazard Mater

December 2024

State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.

Microplastic pollution seriously affects global agroecosystems, strongly influencing soil processes and crop growth. Microplastics impact could be size-dependent, yet relevant field experiments are scarce. We conducted a field experiment in a soil-maize agroecosystem to assess interactions between microplastic types and sizes.

View Article and Find Full Text PDF

Excessive use of chemical fertilizers and extensive farming can degrade soil properties so that leading to decline in crop yields. Combining plant growth-promoting rhizobacteria (PGPR) with biochar (BC) may be an alternative way to mitigate this situation. However, the proportion of PGPR and BC at which crop yield can be improved, as well as the improvement effect extent on different eco-geographic region and crops, remain unclear.

View Article and Find Full Text PDF

Salinity stress disrupts water uptake and nutrient absorption, causing reduced photosynthesis, stunted growth, and decreased crop yields in plants. The use of indole acetic acid (IAA), arginine (AN), and mango fruit waste biochar (MFWB) can be effective methods to overcome this problem. Indole acetic acid (IAA) is a natural auxin hormone that aids cell elongation and division, thereby increasing plant height and branching.

View Article and Find Full Text PDF

Globally, heavy metal (HM) soil pollution is becoming an increasingly serious concern. Heavy metals in soils pose significant environmental and health risks due to their persistence, toxicity, and potential for bioaccumulation. These metals often originate from anthropogenic activities such as industrial emissions, agricultural practices, and improper waste disposal.

View Article and Find Full Text PDF

The increasing environmental issues and growing interest in utilizing natural resources have led to heightened attention towards renewable energy sources. This has spurred the exploration of sustainable approaches, including ecosystem restoration. The soil's ability to retain moisture increases with the rise in organic carbon content.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!