Oxidative stress is thought to be one of the main causes of ageing as it progressively damages cell components throughout life, eventually causing cellular failure and apoptosis. In many organisms, telomeres shorten throughout life under the effect of, amongst other factors, oxidative stress, and are therefore commonly used as marker of biological ageing. However, hibernators, which are regularly exposed to acute oxidative stress when rewarming from torpor, are unexpectedly long-lived. In this review, we explore the causes of oxidative stress associated with hibernation and its impact on telomere dynamics in different taxa, focussing on hibernating rodents. We then speculate on the adaptive mechanisms of hibernators to compensate for the effects of oxidative stress, which may explain their increased longevity. Because winter hibernation appears to be associated with high oxidative stress, hibernators, particularly rodents, may periodically invest in repair mechanisms and antioxidant defences, resulting in seasonal variations in telomere lengths. This research shows how species with a slow life-history strategy deal with large changes in oxidative stress, unifying evolutionary and physiological theories of ageing. Because of the marked seasonal variation in telomere length, we also draw attention when using telomeres as markers for biological aging in seasonal heterotherms and possibly in other highly seasonal species.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jtherbio.2024.103913 | DOI Listing |
mBio
January 2025
State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China.
As a universal language across the bacterial kingdom, the quorum sensing signal autoinducer-2 (AI-2) can coordinate many bacterial group behaviors. However, unknown AI-2 receptors in bacteria may be more than what has been discovered so far, and there are still many unknown functions for this signal waiting to be explored. Here, we have identified a membrane-bound histidine kinase of the pathogenic bacterium , AsrK, as a receptor that specifically detects AI-2 under low boron conditions.
View Article and Find Full Text PDFAdv Clin Exp Med
January 2025
Department of Hematology, Rheumatology and Immunology, The First People's Hospital of Xianyang, China.
Background: Leukemia may form at any age, from newborns to the elderly, and accounts for considerable mortality worldwide.
Objectives: Nerolidol (NRD) is isolated from the aromatic florae oils and was found to have anticancer activities. However, the role of NRD in antiproliferative and apoptosis actions in acute lymphoblastic leukemia (ALL) is unclear.
Background: Prostaglandin E (PGE) in the rostral ventrolateral medulla (RVLM) has been recognized as a pivotal pressor substance in hypertension, yet understanding of its effects and origins in the RVLM remains largely elusive. This study aimed to elucidate the pivotal enzymes and molecular mechanisms underlying PGE synthesis induced by central Ang II (angiotensin II) and its implications in the heightened oxidative stress and sympathetic outflow in hypertension.
Methods And Results: RVLM microinjections of PGE and Tempol were administered in Wistar-Kyoto rats.
J Exp Biol
January 2025
Department of Biology, San Francisco State University, San Francisco, CA 94132, USA.
One notable consequence of climate change is an increase in the frequency, scale and severity of heat waves. Heat waves in terrestrial habitats (atmospheric heat waves, AHW) and marine habitats (marine heat waves, MHW) have received considerable attention as environmental forces that impact organisms, populations and whole ecosystems. Only one ecosystem, the intertidal zone, experiences both MHWs and AHWs.
View Article and Find Full Text PDFCurr Med Chem
January 2025
Shree S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Kherva, 384012, India.
Aims: This study aimed to develop Imatinib Mesylate (IMT)-loaded Poly Lactic-co-Glycolic Acid (PLGA)-D-α-tocopheryl polyethylene glycol succinate (TPGS)- Polyethylene glycol (PEG) hybrid nanoparticles (CSLHNPs) with optimized physicochemical properties for targeted delivery to glioblastoma multiforme.
Background: Glioblastoma multiforme (GBM) is the most destructive type of brain tumor with several complications. Currently, most treatments for drug delivery for this disease face challenges due to the poor blood-brain barrier (BBB) and lack of site-specific delivery.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!