Making full use of the captured energy by phosphorescence light-harvesting systems (PLHSs) and the tunable photoluminescence in energy transfer process to realize the multiple applications is still the challenge of PLHSs research. In this study, we have successfully constructed a highly effective PLHS with tunable multicolor luminescence and efficient conversion of photosensitizer types, which can further be used in photocatalytic organic conversion, information anti-counterfeiting and storage. The supramolecular polymer of BDBP-CB[8], which is generated by cucurbit[8]uril (CB[8]) and 4-(4-bromophenyl)-pyridine derivative (BDBP), realizes a phosphorescence emission and a change in luminescence color. Notably, white light emission was achieved and the logic gate systems were constructed utilizing the application of adjustable luminescence color. More interestingly, PLHS can be constructed by employing BDBP-CB[8] as energy donors, Sulforhodamine 101 (SR101) and Cyanine5 (Cy5) as energy acceptors, which results in a remarkably tunable multicolor photoluminescence to achieve the information storage. Furthermore, we have also found that BDBP-CB[8] can serve as type II photosensitizer for the effective production of singlet oxygen (O) during the photooxidation process of styrene in aqueous environments, attaining a remarkable output rate reaching as high as 89 %. Particularly, compared with O produced by type II photosensitizer BDBP-CB[8], the construction of PLHS can effectively convert type II photosensitizer to type I photosensitizer and efficiently generate superoxide anion radical (O), which can be used for photocatalytic cross-dehydrogenative coupling (CDC) reaction in the aqueous solution with a yield of 90 %. Thus, we have created a PLHS that not only achieves tunable multicolor emission for information anti-counterfeiting and storage, but also realizes the conversion of reactive oxygen species (ROS) for different types photocatalytic oxidation reactions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2024.07.062 | DOI Listing |
Res Sq
December 2024
Department of Bioengineering, Northeastern University, Boston, 02115, USA.
We report a method to directly 3-D print complex heterogeneous optical phantoms with programmable tissue-mimicking absorption and scattering properties. The proposed approach utilizes commercially available multi-color mixing extruders and off-the-shelf polylactic acid (PLA) filaments, making this technique low-cost and broadly accessible. We systematically characterized optical properties, including both absorption and reduced scattering coefficients, at a wide range of mixing ratios of gray, white and translucent filaments and validated our hypothesis of a linear-mixing model between the filament mixing ratios and the resulting optical properties.
View Article and Find Full Text PDFbioRxiv
December 2024
Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA.
In this protocol, we introduce a sparse driver system for cell-type specific single-cell labeling and manipulation in , enabling complete and simultaneous expression of multiple transgenes in the same cells. The system precisely controls expression probability and sparsity via mutant sites with reduced recombination efficiency and tunable FLP levels adjusted by heat-shock durations. We demonstrate that this generalizable toolkit enables tunable sparsity, multi-color staining, single-cell trans-synaptic tracing, single-cell manipulation, and analysis of cell-autonomous gene function.
View Article and Find Full Text PDFAdv Mater
December 2024
Department of Materials Science and Engineering, National University of Singapore, Singapore, 117574, Republic of Singapore.
There has been considerable interest in 2D conductive conjugated MOFs (2D c-MOFs) for their potential applications in sensors, opto-electronics, catalysis, and energy storage, owing to their ultra-high specific surface area, relatively high electrical conductivity, and tunable pore channel sizes for ion/charge diffusion/adsorption. The unique advantages brought by systematic tunings in the metal nodes and organic ligands enable the creation of highly accessible and remarkable structures with diverse chemical and physical behaviors. While the 2D c-MOFs are being explored for the rapid widening spectrum of applications, in this work, the great potential of multicolor transitions and functional properties of these 2D c-MOFs are examined for the new generation of flexible multicolor electrochromic devices (FMEDs).
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
Amino acid-based biomolecular glasses represent an emerging material to meet the demand for sustainable development. However, most amino acids are difficult to vitrify due to their strong crystallization tendency, limiting further advancements of this field. In this study, we demonstrate that the introduction of counterions effectively suppresses crystallization, as hydrogen bonds within the system stabilize the disordered structures.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China.
Color-tunable electroluminescent light-emitting diodes (LEDs) based on quantum dots (QDs) are rapidly emerging as a key technology for next-generation full-color displays and solid-state lighting. However, achieving broad color tunability in LEDs that utilize a single QD emissive material continues to pose significant challenges. Here, we present the first example of bright, multicolor electroluminescent LEDs with tunable emission peaks spanning from 535 to 640 nm, utilizing a new type of single red solid-state emissive carbon quantum dots (R-SSCQDs).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!