β-N-acetylglucosaminidase (GlcNAcase) is an essential biocatalyst in chitin assimilation by marine Vibrio species, which rely on chitin as their main carbon source. Structure-based phylogenetic analysis of the GlcNAcase superfamily revealed that a GlcNAcase from Vibrio campbellii, formerly named V. harveyi, (VhGlcNAcase) belongs to a major clade, Clade A-I, of the phylogenetic tree. Pre-steady-state and steady-state kinetic analysis of the reaction catalysed by VhGlcNAcase with the fluorogenic substrate 4-methylumbelliferyl N-acetyl-β-D-glucosaminide suggested the following mechanism: (1) the Michaelis-Menten complex is formed in a rapid enzyme-substrate equilibrium with a K of 99.1 ± 1 μM. (2) The glycosidic bond is cleaved by the action of the catalytic residue Glu438, followed by the rapid release of the aglycone product with a rate constant (k) of 53.3 ± 1 s. (3) After the formation of an oxazolinium ion intermediate with the assistance of Asp437, the anomeric carbon of the transition state is attacked by a catalytic water, followed by release of the glycone product with a rate constant (k) of 14.6 s, which is rate-limiting. The result clearly indicated a three-step "ping-pong" mechanism for VhGlcNAcase.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbrc.2024.150357 | DOI Listing |
Biochem Biophys Res Commun
October 2024
School of Biomolecular Science and Engineering (BSE), Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong, 21210, Thailand. Electronic address:
β-N-acetylglucosaminidase (GlcNAcase) is an essential biocatalyst in chitin assimilation by marine Vibrio species, which rely on chitin as their main carbon source. Structure-based phylogenetic analysis of the GlcNAcase superfamily revealed that a GlcNAcase from Vibrio campbellii, formerly named V. harveyi, (VhGlcNAcase) belongs to a major clade, Clade A-I, of the phylogenetic tree.
View Article and Find Full Text PDFJ Inorg Biochem
January 2023
Department of Chemistry, North Carolina State University, Raleigh, NC 27695, United States of America. Electronic address:
The pH-dependent peroxidase activity in both dehaloperoxidases A and B was studied by a kinetic assay, stopped flow spectroscopy, resonance Raman spectroscopy, and high-performance liquid chromatography at pH 5.0, 6.0, and 7.
View Article and Find Full Text PDFFront Plant Sci
July 2018
Synchrotron Radiation Research Section, Macromolecular Crystallography Laboratory, National Cancer Institute, Argonne, IL, United States.
Phosphoserine aminotransferase (PSAT) is a pyridoxal 5'-phosphate (PLP)-dependent enzyme that catalyzes the conversion of 3-phosphohydroxypyruvate (3-PHP) to 3-phosphoserine (PSer) in an L-glutamate (Glu)-linked reversible transamination reaction. This process proceeds through a bimolecular ping-pong mechanism and in plants takes place in plastids. It is a part of the phosphorylated pathway of serine biosynthesis, one of three routes recognized in plant organisms that yield serine.
View Article and Find Full Text PDFInt J Biol Macromol
November 2015
Chembiotech Laboratories, Kyrewood House, Tenbury Wells, Worcestershire WR15 8SG, UK. Electronic address:
In plants, adverse conditions often induce an increase in reactive oxygen species (ROS) such as hydrogen peroxide (H2O2). H2O2 is reduced to water, and thus becomes detoxified by enzymes such as Cytisus multiflorus peroxidase (CMP). Here, the steady-state kinetics of the H2O2-supported oxidation of different organic substrates by CMP was investigated.
View Article and Find Full Text PDFActa Biochim Pol
December 2007
Institute of Biochemistry, Vilnius, Lithuania.
In order to clarify the poorly understood mechanisms of two-electron reduction of quinones by flavoenzymes, we examined the quinone reductase reactions of a member of a structurally distinct old yellow enzyme family, Enterobacter cloacae PB2 pentaerythritol tetranitrate reductase (PETNR). PETNR catalyzes two-electron reduction of quinones according to a 'ping-pong' scheme. A multiparameter analysis shows that the reactivity of quinones increases with an increase in their single-electron reduction potential and pK(a) of their semiquinones (a three-step (e(-),H(+),e(-)) hydride transfer scheme), or with an increase in their hydride-transfer potential (E(7)(H(-))) (a single-step (H(-)) hydride transfer scheme), and decreases with a decrease in their van der Waals volume.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!