Telomeres undergo a progressive shortening process as individuals age, and it has been proposed that severely shortened and dysfunctional telomeres play a role in the aging process and the onset of age-related diseases in human beings. An emerging body of evidence indicates that the shortening of telomeres in cultured human cells is also influenced by other replication defects occurring within telomeric repeats. These abnormalities can be detected on metaphase chromosomes. Recent studies have also identified a set of serological markers for telomere dysfunction and DNA damage (elongation factor 1α [EF-1α], stathmin, and N-acetyl-glucosaminidase). With this study, the correlation between telomere abnormalities (by FISH) and these biomarkers as measured in blood serum (by ELISA) from a cohort of 22 healthy subjects at different ages (range 26-101 years) was analyzed. A strong positive correlation between aging and the presence of aberrant telomere structures, sister telomere loss (STL), and sister telomere chromatid fusions (STCF) was detected. When serum markers of telomere dysfunction were correlated with telomere abnormalities, we found that stathmin correlated with total aberrant telomeres structures (r = 0.431, p = 0.0453) and STCF (r = 0.533, p = 0.0107). These findings suggest that serum stathmin can be considered an easy-to-get marker of telomere dysfunction and may serve as valuable indicators of aging.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10522-024-10120-y | DOI Listing |
Mech Ageing Dev
January 2025
Department of Medicine, Divisions of Geriatric Medicine and Gerontology, the Department of Physiology and Biomedical Engineering, and the Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota. Electronic address:
Preclinical models of age-related osteoporosis have been developed based on the accumulation and clearance of senescent cells. The former include animal models based on telomere dysfunction and focal radiation; the latter based on genetic and pharmacological targeting (i.e.
View Article and Find Full Text PDFMech Ageing Dev
January 2025
Department of Medicine, Academy of Applied Medical and Social Sciences-AMiSNS: Akademia Medycznych I Spolecznych Nauk Stosowanych-2 Lotnicza Street, 82-300 Elbląg, Poland; Department of General Surgery and Surgical Oncology, "Saint Wojciech" Hospital, "Nicolaus Copernicus" Health Center, Jana Pawła II 50, 80-462 Gdańsk, Poland.
Aging is a complex process that affects individuals at the molecular, cellular, tissue, and systemic levels, arising from the cumulative effects of damage and diminished repair mechanisms. This process leads to the onset of age-related diseases, including cancer, which exhibits increased incidence with age. Telomeres, the protective caps at chromosome ends, play a crucial role in genome stability and are closely connected with aging and age-related disorders.
View Article and Find Full Text PDFEcotoxicol Environ Saf
January 2025
Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, Shantou, Guangdong 515041, China; Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong 515041, China. Electronic address:
Persistent organic pollutants (POPs) are pervasive organic chemicals with significant environmental and ecological ramifications, extending to adverse human health effects due to their toxicity and persistence. The intestinal mucosal barrier, a sophisticated defense mechanism comprising the epithelial layer, mucosal chemistry, and cellular immunity, shields the host from external threats and fosters a symbiotic relationship with intestinal bacteria. Sirtuin 6 (SIRT6), a sirtuin family member, is pivotal in genome and telomere stability, inflammation regulation, and metabolic processes.
View Article and Find Full Text PDFCells
December 2024
Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy.
The aging process is a multifactorial biological phenomenon starting at birth and persisting throughout life, characterized by a decline in physiological functions and adaptability. This decline results in the diminished capacity of aging organisms to respond to environmental changes and stressors, leading to reduced efficiency in metabolic, immune, and hormonal functions. As behavioral flexibility wanes, older individuals face longer recovery times and increased vulnerability to diseases.
View Article and Find Full Text PDFBiomedicines
December 2024
Department of Surgical Sciences, CIR-Dental School, University of Turin, 10126 Turin, Italy.
Mesenchymal stem/stromal cells (MSCs) are involved in the maintenance and regeneration of a large variety of tissues due to their stemness and multi-lineage differentiation capability. Harnessing these advantageous features, a flurry of clinical trials have focused on MSCs to treat different pathologies, but only few protocols have received regulatory approval so far. Among the various causes hindering MSCs' efficacy is the emergence of cellular senescence, which has been correlated with specific characteristics, such as morphological and epigenetic alterations, DNA damage, ROS production, mitochondrial dysfunction, telomere shortening, non-coding RNAs, loss of proteostasis, and a peculiar senescence-associated secretory phenotype.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!