A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Insight into the Catalytic Oxidation Mechanism of Hydrogen Isotopes by Pt Clusters Confined by Silicalite-1. | LitMetric

Insight into the Catalytic Oxidation Mechanism of Hydrogen Isotopes by Pt Clusters Confined by Silicalite-1.

Inorg Chem

Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, PR China.

Published: July 2024

Highly efficient removal of low concentrations of hydrogen isotope gas in air is crucial for the safe operation of nuclear energy plants. Herein, silicalite-1-confined Pt cluster catalysts were used for the catalytic oxidation of hydrogen isotopes, and the related catalytic mechanism was revealed. Increased temperature in direct hydrogen reduction treatment slightly increased the size of Pt clusters from 1.6 nm at 400 °C to 1.8 nm at 600 °C. The catalyst reduced at 600 °C exhibited excellent performance (99%) in hydrogen isotope oxidation at 75 °C, as well as high stability and catalytic efficiency in continuous and intermittent operation for 7200 min. X-ray absorbance spectroscopy confirmed the existence of Pt clusters in the catalysts, and the theoretical results showed that the total net charge was -0.07 e, indicating a slight charge transfer from the zeolite to the Pt atoms. The metal-support interaction thermally stabilized Pt clusters and altered the metal electronic structure, which enhanced the catalytic activity following a hydroperoxyl (OOH)-mediated route. Based on the low reaction temperature, efficient hydrogen conversion rate, and high stability, the silicalite-1-confined Pt cluster catalyst is expected to be used in hydrogen isotope oxidation treatment to achieve nuclear safety.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.inorgchem.4c02070DOI Listing

Publication Analysis

Top Keywords

hydrogen isotope
12
catalytic oxidation
8
hydrogen isotopes
8
silicalite-1-confined cluster
8
600 °c
8
isotope oxidation
8
high stability
8
hydrogen
7
insight catalytic
4
oxidation
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!