It is crucial to use simple methods to prepare stable polymeric micelles with multiple functions for cancer treatment. Herein, via a "bottom-up" strategy, we reported the fabrication of β-CD-(PEOSMA-PCPTMA-PPEGMA) (βPECP) unimolecular micelles that could simultaneously treat tumors and bacteria with chemotherapy and photodynamic therapy (PDT). The unimolecular micelles consisted of a 21-arm β-cyclodextrin (β-CD) core as a macromolecular initiator, photosensitizer eosin Y (EOS-Y) monomer EOSMA, anticancer drug camptothecin (CPT) monomer, and a hydrophilic shell PEGMA. Camptothecin monomer (CPTMA) could achieve controlled release of the CPT due to the presence of responsively broken disulfide bonds. PEGMA enhanced the biocompatibility of micelles as a hydrophilic shell. Two βPECP with different lengths were synthesized by modulating reaction conditions and the proportion of monomers, which both were self-assembled to unimolecular micelles in water. βPECP unimolecular micelles with higher EOS-Y/CPT content exhibited more excellent O production, in vitro drug release efficiency, higher cytotoxicity, and superior antibacterial activity. Also, we carried out simulations of the self-assembly and CPT release process of micelles, which agreed with the experiments. This nanosystem, which combines antimicrobial and antitumor functions, provides new ideas for bacteria-mediated tumor clinical chemoresistance.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.langmuir.4c00950DOI Listing

Publication Analysis

Top Keywords

unimolecular micelles
20
micelles
8
βpecp unimolecular
8
hydrophilic shell
8
polyphotosensitizer-prodrug unimolecular
4
micelles chemo-photodynamic
4
chemo-photodynamic synergistic
4
synergistic therapy
4
therapy antitumor
4
antitumor antibacteria
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!