Composite electrolytes have been accepted as the most promising species for solid-state batteries, exhibiting the synergistic advantages of solid polymer electrolytes (SPEs) and solid ceramic electrolytes (SCEs). Unfortunately, the interrupted Li conduction across the SPE and SCE interface hinders the ionic conductivity improvement of composite electrolytes. In our study on a ceramic-rich composite electrolyte (CRCE) membrane composed of borate polyanion-based lithiated poly(vinyl formal) (LiPVFM) and LiAlTi(PO) (LATP) particles, it is found that the strong interaction between the polyanions in LiPVFM and LATP particles results in a uniform distribution of ceramic particles at a high proportion of 50 wt % and good robustness of the electrolyte membrane with a Young's modulus of 9.20 GPa. More importantly, ab initio molecular dynamics simulation and experimental results demonstrate that Li conduction across the SPE and SCE interface is induced by the polyanion-based polymer due to its high lithium-ion transference number and similar Li diffusion coefficient with the SCE. Therefore, the unblocked Li conduction among ceramic particles dominates in the CRCE membrane with a high ionic conductivity of 6.60 × 10 S cm at 25 °C, a lithium-ion transference number of 0.84, and a wide electrochemical stable window of 5.0 V (vs Li/Li). Consequently, the high nickel ternary cathode LiNiMnCoO-based batteries with CRCE deliver a high-rate capability of 135.08 mAh g at 1.0 C and a prolonged cycle life of 100 cycles at 0.2 C between 3.0 and 4.3 V. The polyanion-induced Li conduction across the interface sheds new light on solving composite electrolyte problems for solid-state batteries.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.4c06551 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
International Science and Technology Cooperation Base of Energy Materials and Application, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P.R. China.
Poly(ethylene oxide) (PEO) has been widely studied as an electrolyte owing to its excellent lithium compatibility and good film-forming properties. However, its electrochemical performance at room temperature remains a significant challenge due to its low ionic conductivity, narrow electrochemical window, and continuous decomposition. Herein, we prepare a multifunctional polar polymer to optimize PEO's electrochemical properties and cycling stability.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States.
Aqueous sodium-ion batteries (SIBs) are gradually being recognized as viable solutions for large-scale energy storage because of their inherent safety as well as low cost. However, despite recent advancements in water-in-salt electrolyte technologies, the challenge of identifying anode materials with sufficient specific capacity persists, complicating the wider adoption of these batteries. This study introduces an innovative and straightforward approach for synthesizing vanadium oxide laser-scribed graphene (VO-LSG) composites, which function as effective anode materials in aqueous sodium-ion batteries.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China.
Electrochemical CO reduction in acidic media attracts extensive research attention due to its potential in increasing carbon efficiency. In most reports, alkali cations are introduced to suppress hydrogen evolution and to promote CO reduction. However, the mass transport of alkali cations through cation exchange membrane induces the change of electrolyte compositions.
View Article and Find Full Text PDFPhysiol Plant
January 2025
School of Plant Sciences and Food Security, Faculty of Life Sciences, Tel Aviv University, Israel.
Plant chemical composition is a trait gaining increasing importance in plant ecology. However, there is limited research on the patterns and drivers of its variation among different plant functional groups and bioclimatic regions. We conducted an analysis of ionomes utilising X-ray fluorescence on 83 plant species from four distinct functional groups (grasses, legumes, forbs and woody species); we marked plots across 15 sites located in both the desert and Mediterranean bioclimatic regions.
View Article and Find Full Text PDFNanoscale
January 2025
Advanced Batteries Research Center, Korea Electronics Technology Institute, 25, Saenari-ro, Seongnam-si, 13509, Republic of Korea.
The SiO electrode interface is passivated with a SiO layer, which hinders the deposition of an inorganic solid electrolyte interphase (SEI) due to its high surface work function and low exchange current density of electrolyte decomposition. Consequently, a thermally vulnerable, organic-based SEI formed on the SiO electrode, leading to poor cycling performance at elevated temperatures. To address this issue, the SEI formation process is thermoelectrochemically activated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!