Systemic Lupus Erythematosus (SLE) is a multifaceted autoimmune disease that presents with a diverse array of clinical signs and unpredictable disease progression. Conventional diagnostic methods frequently fall short in terms of sensitivity and specificity, which can result in delayed diagnosis and less-than-optimal management. In this study, we introduce a novel approach for improving the identification of SLE through the use of gene-based predictive modelling and Stacked deep learning classifiers. The study proposes a new method for diagnosing SLE using Stacked Deep Learning Classifiers (SDLC) trained on Gene Expression Omnibus (GEO) database data. By combining transcriptomic data from GEO with clinical features and laboratory results, the SDLC model achieves a remarkable accuracy value of 0.996, outperforming traditional methods. Individual models within the SDLC, such as SBi-LSTM and ACNN, achieved accuracies of 92% and 95%, respectively. The SDLC's ensemble learning approach allows for identifying complex patterns in multi-modal data, enhancing accuracy in diagnosing SLE. This study emphasises the potential of deep learning methods, in conjunction with open repositories like GEO, to advance the diagnosis and management of SLE. Overall, this research shows strong performance and potential for improving precision medicine in managing SLE.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11240797 | PMC |
http://dx.doi.org/10.3390/diagnostics14131339 | DOI Listing |
The increasing prevalence of diabetes mellitus worldwide necessitates that medical undergraduates acquire a deep understanding of the disease to ensure accurate diagnosis and effective management. Traditional teaching methods, while foundational, often lack the interactive elements that enhance student engagement and knowledge retention. This study aimed to evaluate the effectiveness of a novel educational board game, "Diabe-teach," in enhancing knowledge retention among medical students compared with conventional self-study methods.
View Article and Find Full Text PDFBMC Cancer
January 2025
Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China.
Objective: Rapid on-site evaluation (ROSE) of respiratory cytology specimens is a critical technique for accurate and timely diagnosis of lung cancer. However, in China, limited familiarity with the Diff-Quik staining method and a shortage of trained cytopathologists hamper utilization of ROSE. Therefore, developing an improved deep learning model to assist clinicians in promptly and accurately evaluating Diff-Quik stained cytology samples during ROSE has important clinical value.
View Article and Find Full Text PDFBMC Med Imaging
January 2025
Department of Information and Communication Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea.
A bone fracture is a medical condition characterized by a partial or complete break in the continuity of the bone. Fractures are primarily caused by injuries and accidents, affecting millions of people worldwide. The healing process for a fracture can take anywhere from one month to one year, leading to significant economic and psychological challenges for patients.
View Article and Find Full Text PDFMed Biol Eng Comput
January 2025
Department of Computer Science and Engineering, Shri Shankaracharya Institute of Professional Management and Technology, Raipur, (C.G.), India.
This study presents an advanced methodology for 3D heart reconstruction using a combination of deep learning models and computational techniques, addressing critical challenges in cardiac modeling and segmentation. A multi-dataset approach was employed, including data from the UK Biobank, MICCAI Multi-Modality Whole Heart Segmentation (MM-WHS) challenge, and clinical datasets of congenital heart disease. Preprocessing steps involved segmentation, intensity normalization, and mesh generation, while the reconstruction was performed using a blend of statistical shape modeling (SSM), graph convolutional networks (GCNs), and progressive GANs.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
To assess the choroidal vessels in healthy eyes using a novel three-dimensional (3D) deep learning approach. In this cross-sectional retrospective study, swept-source OCT 6 × 6 mm scans on Plex Elite 9000 device were obtained. Automated segmentation of the choroidal layer was achieved using a deep-learning ResUNet model along with a volumetric smoothing approach.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!