Skin lesion classification is vital for the early detection and diagnosis of skin diseases, facilitating timely intervention and treatment. However, existing classification methods face challenges in managing complex information and long-range dependencies in dermoscopic images. Therefore, this research aims to enhance the feature representation by incorporating local, global, and hierarchical features to improve the performance of skin lesion classification. We introduce a novel dual-track deep learning (DL) model in this research for skin lesion classification. The first track utilizes a modified Densenet-169 architecture that incorporates a Coordinate Attention Module (CoAM). The second track employs a customized convolutional neural network (CNN) comprising a Feature Pyramid Network (FPN) and Global Context Network (GCN) to capture multiscale features and global contextual information. The local features from the first track and the global features from second track are used for precise localization and modeling of the long-range dependencies. By leveraging these architectural advancements within the DenseNet framework, the proposed neural network achieved better performance compared to previous approaches. The network was trained and validated using the HAM10000 dataset, achieving a classification accuracy of 93.2%.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11241006PMC
http://dx.doi.org/10.3390/diagnostics14131338DOI Listing

Publication Analysis

Top Keywords

skin lesion
16
lesion classification
16
hierarchical features
8
deep learning
8
long-range dependencies
8
second track
8
neural network
8
classification
6
features
5
skin
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!