In this research, we introduce a network that can identify pneumonia, COVID-19, and tuberculosis using X-ray images of patients' chests. The study emphasizes tuberculosis, COVID-19, and healthy lung conditions, discussing how advanced neural networks, like VGG16 and ResNet50, can improve the detection of lung issues from images. To prepare the images for the model's input requirements, we enhanced them through data augmentation techniques for training purposes. We evaluated the model's performance by analyzing the precision, recall, and F1 scores across training, validation, and testing datasets. The results show that the ResNet50 model outperformed VGG16 with accuracy and resilience. It displayed superior ROC AUC values in both validation and test scenarios. Particularly impressive were ResNet50's precision and recall rates, nearing 0.99 for all conditions in the test set. On the hand, VGG16 also performed well during testing-detecting tuberculosis with a precision of 0.99 and a recall of 0.93. Our study highlights the performance of our deep learning method by showcasing the effectiveness of ResNet50 over traditional approaches like VGG16. This progress utilizes methods to enhance classification accuracy by augmenting data and balancing them. This positions our approach as an advancement in using state-of-the-art deep learning applications in imaging. By enhancing the accuracy and reliability of diagnosing ailments such as COVID-19 and tuberculosis, our models have the potential to transform care and treatment strategies, highlighting their role in clinical diagnostics.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11240993PMC
http://dx.doi.org/10.3390/diagnostics14131334DOI Listing

Publication Analysis

Top Keywords

deep learning
12
tuberculosis covid-19
8
covid-19 tuberculosis
8
precision recall
8
tuberculosis
5
augmenting radiological
4
radiological diagnostics
4
diagnostics tuberculosis
4
covid-19
4
covid-19 disease
4

Similar Publications

Background: Urinary tract infection (UTI) is a frequent health-threatening condition. Early reliable diagnosis of UTI helps to prevent misuse or overuse of antibiotics and hence prevent antibiotic resistance. The gold standard for UTI diagnosis is urine culture which is a time-consuming and also an error prone method.

View Article and Find Full Text PDF

Objectives: To construct a prediction model based on deep learning (DL) and radiomics features of diffusion weighted imaging (DWI), and clinical variables for evaluating TP53 mutations in endometrial cancer (EC).

Methods: DWI and clinical data from 155 EC patients were included in this study, consisting of 80 in the training set, 35 in the test set, and 40 in the external validation set. Radiomics features, convolutional neural network-based DL features, and clinical variables were analyzed.

View Article and Find Full Text PDF

Inter-individual variability in symptoms and the dynamic nature of brain pathophysiology present significant challenges in constructing a robust diagnostic model for migraine. In this study, we aimed to integrate different types of magnetic resonance imaging (MRI), providing structural and functional information, and develop a robust machine learning model that classifies migraine patients from healthy controls by testing multiple combinations of hyperparameters to ensure stability across different migraine phases and longitudinally repeated data. Specifically, we constructed a diagnostic model to classify patients with episodic migraine from healthy controls, and validated its performance across ictal and interictal phases, as well as in a longitudinal setting.

View Article and Find Full Text PDF

Automated stenosis estimation of coronary angiographies using end-to-end learning.

Int J Cardiovasc Imaging

January 2025

Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.

The initial evaluation of stenosis during coronary angiography is typically performed by visual assessment. Visual assessment has limited accuracy compared to fractional flow reserve and quantitative coronary angiography, which are more time-consuming and costly. Applying deep learning might yield a faster and more accurate stenosis assessment.

View Article and Find Full Text PDF

Objectives: Predicting rheumatoid arthritis (RA) progression in undifferentiated arthritis (UA) patients remains a challenge. Traditional approaches combining clinical assessments and ultrasonography (US) often lack accuracy due to the complex interaction of clinical variables, and routine extensive US is impractical. Machine learning (ML) models, particularly those integrating the 18-joint ultrasound scoring system (US18), have shown potential to address these issues but remain underexplored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!