LoRa enables long-range communication for Internet of Things (IoT) devices, especially those with limited resources and low power requirements. Consequently, LoRa has emerged as a popular choice for numerous IoT applications. However, the security of LoRa devices is one of the major concerns that requires attention. Existing device identification mechanisms use cryptography which has two major issues: (1) cryptography is hard on the device resources and (2) physical attacks might prevent them from being effective. Deep learning-based radio frequency fingerprinting identification (RFFI) is emerging as a key candidate for device identification using hardware-intrinsic features. In this paper, we present a comprehensive survey of the state of the art in the area of deep learning-based radio frequency fingerprinting identification for LoRa devices. We discuss various categories of radio frequency fingerprinting techniques along with hardware imperfections that can be exploited to identify an emitter. Furthermore, we describe different deep learning algorithms implemented for the task of LoRa device classification and summarize the main approaches and results. We discuss several representations of the LoRa signal used as input to deep learning models. Additionally, we provide a thorough review of all the LoRa RF signal datasets used in the literature and summarize details about the hardware used, the type of signals collected, the features provided, availability, and size. Finally, we conclude this paper by discussing the existing challenges in deep learning-based LoRa device identification and also envisage future research directions and opportunities.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11244599 | PMC |
http://dx.doi.org/10.3390/s24134411 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!