A 3 MHz Low-Error Adaptive Howland Current Source for High-Frequency Bioimpedance Applications.

Sensors (Basel)

Research Centre for Biomedical Engineering, City, University of London, London EC1V 0HB, UK.

Published: July 2024

Bioimpedance is a diagnostic sensing method used in medical applications, ranging from body composition assessment to detecting skin cancer. Commonly, discrete-component (and at times integrated) circuit variants of the Howland Current Source (HCS) topology are employed for injection of an AC current. Ideally, its amplitude should remain within 1% of its nominal value across a frequency range, and that nominal value should be programmable. However, the method's applicability and accuracy are hindered due to the current amplitude diminishing at frequencies above 100 kHz, with very few designs accomplishing 1 MHz, and only at a single nominal amplitude. This paper presents the design and implementation of an adaptive current source for bioimpedance applications employing automatic gain control (AGC). The "Adaptive Howland Current Source" (AHCS) was experimentally tested, and the results indicate that the design can achieve less than 1% amplitude error for both 1 mA and 100 µA currents for bandwidths up to 3 MHz. Simulations also indicate that the system can be designed to achieve up to 19% noise reduction relative to the most common HCS design. AHCS addresses the need for high bandwidth AC current sources in bioimpedance spectroscopy, offering automatic output current compensation without constant recalibration. The novel structure of AHCS proves crucial in applications requiring higher β-dispersion frequencies exceeding 1 MHz, where greater penetration depths and better cell status assessment can be achieved, e.g., in the detection of skin or breast cancer.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11243945PMC
http://dx.doi.org/10.3390/s24134357DOI Listing

Publication Analysis

Top Keywords

howland current
12
current source
12
current
8
bioimpedance applications
8
mhz
4
mhz low-error
4
low-error adaptive
4
adaptive howland
4
source high-frequency
4
bioimpedance
4

Similar Publications

Spatial changes in benthic community structure have been observed across natural gradients in deep-sea ecosystems, but these patterns remain under-sampled on seamounts. Here, we identify the spatial composition and distribution of coral and sponge taxa on four sides of a single central Pacific equatorial "model" seamount within the US EEZ surrounding the Howland and Baker unit of the Pacific Islands Heritage Marine National Monument. This seamount rises from 5,000 + m to mesophotic depths of 196 m, and is influenced by the Equatorial Undercurrent.

View Article and Find Full Text PDF

Prototype analysis of a low-power, small-scale wearable medical device.

J Electr Bioimpedance

January 2024

Electrical Engineering Department, State University of Santa Catarina, Santa Catarina, Brazil.

Wearable and portable devices are gaining significant popularity across consumer electronics as well as in medical and industrial fields. To ensure that these devices are both comfortable and appealing to users, they need to have low battery consumption and be compact in both size and weight. The EGluco project is focused on developing a wearable device for non-invasive blood glucose monitoring.

View Article and Find Full Text PDF

Evolutionary-developmental theories propose that early adverse experiences adaptively shift the timing (i.e., onset) and tempo (i.

View Article and Find Full Text PDF

An arbitrary waveform neurostimulator for preclinical studies: design and verification.

Med Biol Eng Comput

December 2024

Department of Applied Physics III, Universidad de Sevilla, Camino de los Descubrimientos, S/N, 41092, Sevilla, Spain.

Neural electrostimulation has enabled different therapies to treat a number of health problems. For example, the cochlear implant allows for recovering the hearing function and deep brain electrostimulation has been proved to reduce tremor in Parkinson's disease. Other approaches such as retinal prostheses are progressing rapidly, as researchers continue to investigate new strategies to activate targeted neurons more precisely.

View Article and Find Full Text PDF

Huntington's disease (HD) arises from a CAG expansion in the () gene beyond a critical threshold. A major thrust of current HD therapeutic development is lowering levels of mutant mRNA (m) and protein (mHTT) with the aim of reducing the toxicity of these product(s). Human genetic data also support a key role for somatic instability (SI) in 's CAG repeat - whereby it lengthens with age in specific somatic cell types - as a key driver of age of motor dysfunction onset.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!