In the present study, we used two popular radio communication SAW resonators as a base for gas sensors and tested their performance. Taking into account issues related to sensor sensitivity, the possibility of applying a sensor layer, the availability of devices, and other related issues, we selected two popular single-port resonators with center frequencies of 315 and 433 MHz (models R315 and R433, respectively) for testing purposes. Both resonators were equipped with a sensitive film of hexafluoroisopropanol-substituted polydimethylsiloxane, a material that selectively absorbs molecules with a high ability to form basic hydrogen bonds. Fabricated sensors were used to detect trace amounts of dimethyl methylphosphonate (DMMP) vapor, which has often been used in similar studies as a nerve chemical warfare agent simulant. Sensors using both devices loaded with sensor layers of an optimal thickness rapidly reacted to a gas containing DMMP at a concentration of 3 mg/m, generating a stable analytical signal ranging from several to several dozen kilohertz. In the case of R433, the frequency signal was 20.5 kHz at 1 min from the beginning of exposure to DMMP. The obtained results showed that the used transducers exhibited good performance as a base for gas sensors. Finally, their suitability for sensing applications was confirmed by a comparison with the results obtained in previous similar studies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11244062 | PMC |
http://dx.doi.org/10.3390/s24134299 | DOI Listing |
PLoS One
January 2025
School of Resources and Environment, Inner Mongolia University of Technology, Hohhot, China.
The aim of this study is to address the limitations of convolutional networks in recognizing modulation patterns. These networks are unable to utilize temporal information effectively for feature extraction and modulation pattern recognition, resulting in inefficient modulation pattern recognition. To address this issue, a signal modulation recognition method based on a two-way interactive temporal attention network algorithm has been developed.
View Article and Find Full Text PDFHealth Phys
January 2025
Sublight Engineering PLLC, Arlington, VA.
This study investigated the implementation and impact of fifth-generation (5G) wireless millimeter wave (mmW) technology. 5G offers significant advancements over previous generations and supports additional frequency bands, including mmW, to enhance mobile broadband with ultra-reliable, low-latency communications, supporting a high volume of diverse communications. This technology is expected to enable billions of new connections in the Internet of Things (IoT), fostering innovations in various sectors including healthcare, manufacturing, and education.
View Article and Find Full Text PDFSensors (Basel)
January 2025
State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing 100876, China.
Satellite-ground communication is a critical component in the global communication system, significantly contributing to environmental monitoring, radio and television broadcasting, aerospace operations, and other domains. However, the technology encounters challenges in data transmission efficiency, due to the drastic alterations in the communication channel caused by the rapid movement of satellites. In comparison to traditional transmission methods, semantic communication (SemCom) technology enhances transmission efficiency by comprehending and leveraging the intrinsic meaning of information, making it ideal for image transmission in satellite communications.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Applied Research Laboratory, The Pennsylvania State University, State College, PA 16801, USA.
The frequency diverse array (FDA) is an architecture capable of beamforming in both range and angle, improving upon the traditional phased array (PA) which can only achieve beamforming in angle. The FDA employing directional modulation (DM) for secure directional communications (SDC) can reduce bit error rates (BERs) in both range and angle, again improving upon the traditional PA which can only reduce BER in angle. In this paper, we document the challenges involved in the design and implementation of a two-element linear FDA employing fast-time binary phase-shift keying (BPSK) modulations.
View Article and Find Full Text PDFSensors (Basel)
December 2024
CMEMS-UMinho, University of Minho, 4800-058 Guimarães, Portugal.
In biomedical research, telemetry is used to take automated physiological measurements wirelessly from animals, as it reduces their stress and allows recordings for large data collection over long periods. The ability to transmit high-throughput data from an in-body device (e.g.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!