The emergence of 6G communication technologies brings both opportunities and challenges for the Internet of Things (IoT) in smart cities. In this paper, we introduce an advanced network slicing framework designed to meet the complex demands of 6G smart cities' IoT deployments. The framework development follows a detailed methodology that encompasses requirement analysis, metric formulation, constraint specification, objective setting, mathematical modeling, configuration optimization, performance evaluation, parameter tuning, and validation of the final design. Our evaluations demonstrate the framework's high efficiency, evidenced by low round-trip time (RTT), minimal packet loss, increased availability, and enhanced throughput. Notably, the framework scales effectively, managing multiple connections simultaneously without compromising resource efficiency. Enhanced security is achieved through robust features such as 256-bit encryption and a high rate of authentication success. The discussion elaborates on these findings, underscoring the framework's impressive performance, scalability, and security capabilities.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11243923 | PMC |
http://dx.doi.org/10.3390/s24134254 | DOI Listing |
Magn Reson Med
January 2025
Department of Radiology, University of Missouri, Columbia, Missouri, USA.
Purpose: The aim of the work is to develop a cascaded diffusion-based super-resolution model for low-resolution (LR) MR tagging acquisitions, which is integrated with parallel imaging to achieve highly accelerated MR tagging while enhancing the tag grid quality of low-resolution images.
Methods: We introduced TagGen, a diffusion-based conditional generative model that uses low-resolution MR tagging images as guidance to generate corresponding high-resolution tagging images. The model was developed on 50 patients with long-axis-view, high-resolution tagging acquisitions.
Int J Cardiovasc Imaging
January 2025
Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), di Cagliari - Polo di Monserrato s.s. 554 Monserrato (Cagliari), Monserrato, 09045, Italy.
The purpose of this study was to explore the impact of papillary muscle (PPM) infarction on left atrial and ventricular strain parameters in patients with non-anterior ST-segment elevation myocardial infarction (NA-STEMI) using cardiovascular magnetic resonance (CMR). This retrospective study performed CMR scans on 88 consecutive patients with NA-STEMI (68 males, 65 ± 10.05 years).
View Article and Find Full Text PDFPLoS One
January 2025
Electrical, Mechanical & Computer Engineering School, Federal University of Goias, Goiania, Brazil.
This paper proposes the use of artificial intelligence techniques, specifically the nnU-Net convolutional neural network, to improve the identification of left ventricular walls in images of myocardial perfusion scintigraphy, with the objective of improving the diagnosis and treatment of coronary artery disease. The methodology included data collection in a clinical environment, followed by data preparation and analysis using the 3D Slicer Platform for manual segmentation, and subsequently, the application of artificial intelligence models for automated segmentation, focusing on the efficiency of identifying the walls of the left ventricular. A total of 83 clinical routine exams were collected, each exam containing 50 slices, which is 4,150 images.
View Article and Find Full Text PDFComput Methods Programs Biomed
January 2025
Guizhou Province International Science and Technology Cooperation Base for Precision Imaging Diagnosis and Treatment, Key Laboratory of Advanced Medical Imaging and Intelligent Computing of Guizhou Province, Department of Radiology, Guizhou Provincial People's Hospital, Guizhou 550002, China. Electronic address:
Background And Objective: Accurate segmentation of the prostate region in magnetic resonance imaging (MRI) is crucial for prostate-related diagnoses. Recent studies have incorporated Transformers into prostate region segmentation to better capture long-range global feature representations. However, due to the computational complexity of Transformers, these studies have been limited to processing single slices.
View Article and Find Full Text PDFAging Dis
January 2025
Institute of Nutrition and Food Technology (INTA), Universidad de Chile, Santiago, Chile.
The gut-brain axis is a bidirectional communication pathway that modulates cognitive function. A dysfunctional gut-brain axis has been associated with cognitive impairments during aging. Therefore, we propose evaluating whether modulation of the gut microbiota through fecal microbiota transplantation (FMT) from young-trained donors (YT) to middle-aged or aged mice could enhance brain function and cognition in old age.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!