Domain Adaptation for Bearing Fault Diagnosis Based on SimAM and Adaptive Weighting Strategy.

Sensors (Basel)

School of Electrical Engineering and Automation, Tianjin University of Technology, Tianjin 300384, China.

Published: June 2024

Domain adaptation techniques are crucial for addressing the discrepancies between training and testing data distributions caused by varying operational conditions in practical bearing fault diagnosis. However, transfer fault diagnosis faces significant challenges under complex conditions with dispersed data and distinct distribution differences. Hence, this paper proposes CWT-SimAM-DAMS, a domain adaptation method for bearing fault diagnosis based on SimAM and an adaptive weighting strategy. The proposed scheme first uses Continuous Wavelet Transform (CWT) and Unsharp Masking (USM) for data preprocessing, and then feature extraction is performed using the Residual Network (ResNet) integrated with the SimAM module. This is combined with the proposed adaptive weighting strategy based on Joint Maximum Mean Discrepancy (JMMD) and Conditional Adversarial Domain Adaption Network (CDAN) domain adaptation algorithms, which minimizes the distribution differences between the source and target domains more effectively, thus enhancing domain adaptability. The proposed method is validated on two datasets, and experimental results show that it improves the accuracy of bearing fault diagnosis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11243865PMC
http://dx.doi.org/10.3390/s24134251DOI Listing

Publication Analysis

Top Keywords

fault diagnosis
20
domain adaptation
16
bearing fault
16
adaptive weighting
12
weighting strategy
12
diagnosis based
8
based simam
8
simam adaptive
8
distribution differences
8
domain
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!