Exposure to high concentrations of odours can result in health effects associated with direct health risks and irritation from nuisance. This investigation aimed to correlate aspects of the waste composting process with the emission levels of malodourous compounds. An essential optimisation criterion is the reduction of negative environmental impacts, particularly odour emissions. This study characterises odour concentration variations across various technological variants over different weeks of the composting process. A secondary objective is evaluating the efficacy of these variants, which differ in inoculation substances and compost heap composition. Olfactometric analyses were conducted using portable field olfactometers, enabling precise dilutions by mixing contaminated and purified air. The primary aim was to examine the correlation between selected odour parameters, determined via sensory analysis, and ammonia concentration during different composting weeks. Ammonia levels were measured using an RAE electrochemical sensor. Research shows that odour concentration is a significant indicator of compost maturity. In situ, olfactometric testing can effectively monitor the aerobic stabilisation process alone or with other methods. The most effective technological solution was identified by combining olfactometric and ammonia measurements and monitoring composting parameters, ensuring minimal odour emissions and the safety of employees and nearby residents.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11243941PMC
http://dx.doi.org/10.3390/s24134200DOI Listing

Publication Analysis

Top Keywords

composting process
8
odour emissions
8
odour concentration
8
odour
6
application sensory
4
sensory methods
4
methods evaluate
4
evaluate effectiveness
4
effectiveness solutions
4
solutions reduce
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!