Hand-intensive work is strongly associated with work-related musculoskeletal disorders (WMSDs) of the hand/wrist and other upper body regions across diverse occupations, including office work, manufacturing, services, and healthcare. Addressing the prevalence of WMSDs requires reliable and practical exposure measurements. Traditional methods like electrogoniometry and optical motion capture, while reliable, are expensive and impractical for field use. In contrast, small inertial measurement units (IMUs) may provide a cost-effective, time-efficient, and user-friendly alternative for measuring hand/wrist posture during real work. This study compared six orientation algorithms for estimating wrist angles with an electrogoniometer, the current gold standard in field settings. Six participants performed five simulated hand-intensive work tasks (involving considerable wrist velocity and/or hand force) and one standardised hand movement. Three multiplicative Kalman filter algorithms with different smoothers and constraints showed the highest agreement with the goniometer. These algorithms exhibited median correlation coefficients of 0.75-0.78 for flexion/extension and 0.64 for radial/ulnar deviation across the six subjects and five tasks. They also ranked in the top three for the lowest mean absolute differences from the goniometer at the 10th, 50th, and 90th percentiles of wrist flexion/extension (9.3°, 2.9°, and 7.4°, respectively). Although the results of this study are not fully acceptable for practical field use, especially for some work tasks, they indicate that IMU-based wrist angle estimation may be useful in occupational risk assessments after further improvements.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11244359 | PMC |
http://dx.doi.org/10.3390/s24134173 | DOI Listing |
Sci Rep
December 2024
School of Electronics Engineering, Vellore Institute of Technology, Vellore, India.
Autonomous vehicles, often known as self-driving cars, have emerged as a disruptive technology with the promise of safer, more efficient, and convenient transportation. The existing works provide achievable results but lack effective solutions, as accumulation on roads can obscure lane markings and traffic signs, making it difficult for the self-driving car to navigate safely. Heavy rain, snow, fog, or dust storms can severely limit the car's sensors' ability to detect obstacles, pedestrians, and other vehicles, which pose potential safety risks.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Statistical Science, Duke University, Durham, 27708-0251, USA.
The article is motivated by an application to the EarlyBird cohort study aiming to explore how anthropometrics and clinical and metabolic processes are associated with obesity and glucose control during childhood. There is interest in inferring the relationship between dynamically changing and high-dimensional metabolites and a longitudinal response. Important aspects of the analysis include the selection of the important set of metabolites and the accommodation of missing data in both response and covariate values.
View Article and Find Full Text PDFJ Mol Biol
December 2024
Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA. Electronic address:
The Papilloma Virus Episteme (PaVE) https://pave.niaid.nih.
View Article and Find Full Text PDFProg Neuropsychopharmacol Biol Psychiatry
December 2024
Universal Brain, San Francisco, USA. Electronic address:
Aims: Depression is a prevalent, burdensome, and difficult mental health disorder to treat. Significant heterogeneity in clinical characteristics and course of depression hinders treatment success. Efforts to identify more homogeneous subgroups of depression could reduce heterogeneity of depression and therefore improve treatment development and randomized clinical trial outcomes.
View Article and Find Full Text PDFNeuroimage
December 2024
Institute of Population Health, University of Liverpool, United Kingdom; Hanse Wissenschaftskolleg, Delmenhorst, Germany. Electronic address:
Recent work has shown rapid microstructural brain changes in response to learning new tasks. These cognitive tasks tend to draw on multiple brain regions connected by white matter (WM) tracts. Therefore, behavioural performance change is likely to be the result of microstructural, functional activation, and connectivity changes in extended neural networks.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!