A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

REMA: A Rich Elastic Mixed Attention Module for Single Image Super-Resolution. | LitMetric

REMA: A Rich Elastic Mixed Attention Module for Single Image Super-Resolution.

Sensors (Basel)

School of Computer Engineering and Science, Shanghai University, Shanghai 200444, China.

Published: June 2024

Detail preservation is a major challenge for single image super-resolution (SISR). Many deep learning-based SISR methods focus on lightweight network design, but these may fall short in real-world scenarios where performance is prioritized over network size. To address these problems, we propose a novel plug-and-play attention module, rich elastic mixed attention (REMA), for SISR. REMA comprises the rich spatial attention module (RSAM) and the rich channel attention module (RCAM), both built on Rich Structure. Based on the results of our research on the module's structure, size, performance, and compatibility, Rich Structure is proposed to enhance REMA's adaptability to varying input complexities and task requirements. RSAM learns the mutual dependencies of multiple LR-HR pairs and multi-scale features, while RCAM accentuates key features through interactive learning, effectively addressing detail loss. Extensive experiments demonstrate that REMA significantly improves performance and compatibility in SR networks compared to other attention modules. The REMA-based SR network (REMA-SRNet) outperforms comparative algorithms in both visual effects and objective evaluation quality. Additionally, we find that module compatibility correlates with cardinality and in-branch feature bandwidth, and that networks with high effective parameter counts exhibit enhanced robustness across various datasets and scale factors in SISR.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11243857PMC
http://dx.doi.org/10.3390/s24134145DOI Listing

Publication Analysis

Top Keywords

attention module
16
rich elastic
8
elastic mixed
8
mixed attention
8
single image
8
image super-resolution
8
rich structure
8
performance compatibility
8
attention
6
module
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!