The main limitation of wireless sensor networks (WSNs) lies in their reliance on battery power. Therefore, the primary focus of the current research is to determine how to transmit data in a rational and efficient way while simultaneously extending the network's lifespan. In this paper, a hybrid of a fuzzy logic system and a quantum annealing algorithm-based clustering and routing protocol (FQA) is proposed to improve the stability of the network and minimize energy consumption. The protocol uses a fuzzy inference system (FIS) to select appropriate cluster heads (CHs). In the routing phase, we used the quantum annealing algorithm to select the optimal route from the CHs and the base station (BS). Furthermore, we defined an energy threshold to filter candidate CHs in order to save computation time. Unlike with periodic clustering, we adopted an on-demand re-clustering mechanism to perform global maintenance of the network, thereby effectively reducing the computation and overhead. The FQA was compared with FRNSEER, BOA-ACO, OAFS-IMFO, and FC-RBAT in different scenarios from the perspective of energy consumption, alive nodes, network lifetime, and throughput. According to the simulation results, the FQA outperformed all the other methods in all scenarios.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11244538PMC
http://dx.doi.org/10.3390/s24134105DOI Listing

Publication Analysis

Top Keywords

quantum annealing
12
routing protocol
8
wireless sensor
8
sensor networks
8
fuzzy logic
8
annealing algorithm
8
energy consumption
8
energy-efficient cluster-based
4
cluster-based routing
4
protocol wireless
4

Similar Publications

Structural and photoelectric properties of p-i-n photodiodes based on GeSiSn/Si multiple quantum dots both on Si and silicon-on-insulator (SOI) substrates were investigated. Elastic strained state of grown films was demonstrated by x-ray diffractometry. Annealing of p-i-n structures before the mesa fabrication can improve the ideality factor of current-voltage characteristics.

View Article and Find Full Text PDF

Two-dimensional halide perovskites are attracting attention due to their structural diversity, improved stability, and enhanced quantum efficiency compared to their three-dimensional counterparts. In particular, Dion-Jacobson (DJ) phase perovskites exhibit superior structural stability compared to Ruddlesden-Popper phase perovskites. The inherent quantum well structure of layered perovskites leads to highly anisotropic charge transport and optical properties.

View Article and Find Full Text PDF

Structural and photoelectric properties of p-i-n photodiodes based on GeSiSn/Si multiple quantum dots both on Si and silicon-on-insulator (SOI) substrates were investigated. Elastic strained state of grown films was demonstrated by x-ray diffractometry. Annealing of p-i-n structures before the mesa fabrication can improve the ideality factor of current-voltage characteristics.

View Article and Find Full Text PDF

Quantum emitters in solid-state materials are highly promising building blocks for quantum information processing and communication science. Recently, single-photon emission from van der Waals materials has been reported in transition metal dichalcogenides and hexagonal boron nitride, exhibiting the potential to realize photonic quantum technologies in two-dimensional materials. Here, we report the generation of room temperature single-photon emission from exfoliated and thermally annealed single crystals of van der Waals α-MoO.

View Article and Find Full Text PDF

Near-ultraviolet (NUV)-pumped white light-emitting-diodes (WLEDs) often suffer from poor color rendering in the 480-520 nm range, highlighting the need for an efficient cyan phosphor with strong absorption at 370-420 nm. This study presents the successful synthesis of cyan-emitting ZnS/ZnO phosphors using a high-energy planetary ball milling method followed by post-annealing. The fabricated phosphors, with particle sizes ranging from 1 to 3 μm, exhibit strong cyan emission with CIE chromaticity coordinates of (0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!