Wearable robots are emerging as a viable and effective solution for assisting and enabling people who suffer from balance and mobility disorders. Virtual prototyping is a powerful tool to design robots, preventing the costly iterative physical prototyping and testing. Design of wearable robots through modelling, however, often involves computationally expensive and error-prone multi-body simulations wrapped in an optimization framework to simulate human-robot-environment interactions. This paper proposes a framework to make the human-robot link segment system statically determinate, allowing for the closed-form inverse dynamics formulation of the link-segment model to be solved directly in order to simulate human-robot dynamic interactions. The paper also uses a technique developed by the authors to estimate the walking ground reactions from reference kinematic data, avoiding the need to measure them. The proposed framework is (a) computationally efficient and (b) transparent and easy to interpret, and (c) eliminates the need for optimization, detailed musculoskeletal modelling and measuring ground reaction forces for normal walking simulations. It is used to optimise the position of hip and ankle joints and the actuator torque-velocity requirements for a seven segments of a lower-limb wearable robot that is attached to the user at the shoes and pelvis. Gait measurements were carried out on six healthy subjects, and the data were used for design optimization and validation. The new technique promises to offer a significant advance in the way in which wearable robots can be designed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11244218 | PMC |
http://dx.doi.org/10.3390/s24134081 | DOI Listing |
Wearable Technol
December 2024
Department of Mechanical Engineering, Vanderbilt University, Nashville, TN, USA.
This work studies upper-limb impairment resulting from stroke or traumatic brain injury and presents a simple technological solution for a subset of patients: a soft, active stretching aid for at-home use. To better understand the issues associated with existing associated rehabilitation devices, customer discovery conversations were conducted with 153 people in the healthcare ecosystem (60 patients, 30 caregivers, and 63 medical providers). These patients fell into two populations: spastic (stiff, clenched hands) and flaccid (limp hands).
View Article and Find Full Text PDFWearable Technol
December 2024
Sensory Motor Systems Lab, Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland.
Cable-driven exosuits have the potential to support individuals with motor disabilities across the continuum of care. When supporting a limb with a cable, force sensors are often used to measure tension. However, force sensors add cost, complexity, and distal components.
View Article and Find Full Text PDFWearable Technol
December 2024
Robotics Research Centre, School of Mechanical and Aerospace Engineering, NTU, Singapore.
Pathological tremors can often be debilitating to activities of daily living and significantly affect the quality of life. Such tremulous movements are commonly observed in wrist flexion-extension (FE). To suppress this tremor we present a wearable robot (WR) with a customized mechanical metamaterial (MM) as the physical human-robot interface (pHRI).
View Article and Find Full Text PDFWearable Technol
November 2024
Embedded Systems and Robotics Lab, Tezpur University, Tezpur, Assam, India.
Electromyogram (EMG) has been a fundamental approach for prosthetic hand control. However it is limited by the functionality of residual muscles and muscle fatigue. Currently, exploring temporal shifts in brain networks and accurately classifying noninvasive electroencephalogram (EEG) for prosthetic hand control remains challenging.
View Article and Find Full Text PDFWearable Technol
November 2024
BruBotics, Vrije Universiteit Brussel, Brussels, 1050, Belgium.
Advancements in wearable robots aim to improve user motion, motor control, and overall experience by minimizing energetic cost (EC). However, EC is challenging to measure and it is typically indirectly estimated through respiratory gas analysis. This study introduces a novel EMG-based objective function that captures individuals' natural energetic expenditure during walking.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!