A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Development of a Novel Classification Approach for Cow Behavior Analysis Using Tracking Data and Unsupervised Machine Learning Techniques. | LitMetric

Global Positioning Systems (GPSs) can collect tracking data to remotely monitor livestock well-being and pasture use. Supervised machine learning requires behavioral observations of monitored animals to identify changes in behavior, which is labor-intensive. Our goal was to identify animal behaviors automatically without using human observations. We designed a novel framework using unsupervised learning techniques. The framework contains two steps. The first step segments cattle tracking data using state-of-the-art time series segmentation algorithms, and the second step groups segments into clusters and then labels the clusters. To evaluate the applicability of our proposed framework, we utilized GPS tracking data collected from five cows in a 1096 ha rangeland pasture. Cow movement pathways were grouped into six behavior clusters based on velocity (m/min) and distance from water. Again, using velocity, these six clusters were classified into walking, grazing, and resting behaviors. The mean velocity for predicted walking and grazing and resting behavior was 44, 13 and 2 min/min, respectively, which is similar to other research. Predicted diurnal behavior patterns showed two primary grazing bouts during early morning and evening, like in other studies. Our study demonstrates that the proposed two-step framework can use unlabeled GPS tracking data to predict cattle behavior without human observations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11243785PMC
http://dx.doi.org/10.3390/s24134067DOI Listing

Publication Analysis

Top Keywords

tracking data
20
machine learning
8
learning techniques
8
human observations
8
gps tracking
8
walking grazing
8
grazing resting
8
behavior
6
tracking
5
data
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!