Quantitative optical gas imaging (QOGI) system can rapidly quantify leaks detected by optical gas imaging (OGI) cameras across the oil and gas supply chain. A comprehensive evaluation of the QOGI system's quantification capability is needed for the successful adoption of the technology. This study conducted single-blind experiments to examine the quantification performance of the FLIR QL320 QOGI system under near-field conditions at a pseudo-realistic, outdoor, controlled testing facility that mimics upstream and midstream natural gas operations. The study completed 357 individual measurements across 26 controlled releases and 71 camera positions for release rates between 0.1 kg Ch4/h and 2.9 kg Ch4/h of compressed natural gas (which accounts for more than 90% of typical component-level leaks in several production facilities). The majority (75%) of measurements were within a quantification factor of 3 (quantification error of -67% to 200%) with individual errors between -90% and 831%, which reduced to -79% to +297% when the mean of estimates of the same controlled release from multiple camera positions was considered. Performance improved with increasing release rate, using clear sky as plume background, and at wind speeds ≤1 mph relative to other measurement conditions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11244249 | PMC |
http://dx.doi.org/10.3390/s24134044 | DOI Listing |
Sci Transl Med
January 2025
Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
Alzheimer's disease (AD) is the most prevalent neurodegenerative disorder. Antiamyloid antibody treatments modestly slow disease progression in mild dementia due to AD. Emerging evidence shows that homeostatic dysregulation of the brain immune system, especially that orchestrated by microglia, plays an important role in disease onset and progression.
View Article and Find Full Text PDFMacromol Rapid Commun
January 2025
College of Chemistry and Chemical Engineering, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Material, Northwest Normal University, Lanzhou, Gansu, 730070, P. R. China.
Recent advancements in inverse vulcanization have led to the development of sulfur-rich polymers with diverse applications. However, progress is constrained by the harsh high-temperature reaction conditions, limited applicability, and the generation of hazardous HS gas. This study presents an induced IV method utilizing selenium octanoic acid, yielding sulfur-selenium rich polymers with full atom economy, even at a low-temperatures of 100-120 °C.
View Article and Find Full Text PDFPhotoacoustics
February 2025
College of Engineering, Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
A novel balloon-type photoacoustic cell (BTPAC) is proposed to facilitate the detection limitations of acetylene (CH) gas achieving ppb level. Here, an ellipsoidal photoacoustic cavity is employed as the platform for gas-light interaction. By strategically directing the excitation source towards the focal point of the ellipsoidal cavity, ensuring its trajectory traverses the focal point upon each reflection from the interior walls.
View Article and Find Full Text PDFNanoscale
January 2025
Department of Chemistry, Netaji Subhas University of Technology, Delhi, India.
Nanoporous organic polymers (NPOPs) have emerged as versatile materials with robust thermal stability, large surface area (up to 2500 m g), and customizable porosity, making them ideal candidates for advanced hydrogen (H) storage applications. This review provides a comprehensive analysis of various NPOPs, including covalent organic frameworks (COFs), hypercrosslinked polymers (HCLPs), conjugated microporous polymers (CMPs), and porous aromatic frameworks (POAFs). Notably, these materials demonstrate superior H storage capacities, achieving up to 10 wt% at cryogenic temperatures, which is essential for applying H as a clean energy carrier.
View Article and Find Full Text PDFTalanta
January 2025
DCU Water Institute, School of Chemical Sciences, Dublin City University, Ireland. Electronic address:
Anthropogenic activities have led to increased stress on our marine and other aquatic environments. There is a pressing need to monitor, measure, understand and mitigate causes of these pressures. This paper presents a novel optical head for monitoring and measuring marine based optical phenomena.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!