AI Article Synopsis

Article Abstract

Quantitative optical gas imaging (QOGI) system can rapidly quantify leaks detected by optical gas imaging (OGI) cameras across the oil and gas supply chain. A comprehensive evaluation of the QOGI system's quantification capability is needed for the successful adoption of the technology. This study conducted single-blind experiments to examine the quantification performance of the FLIR QL320 QOGI system under near-field conditions at a pseudo-realistic, outdoor, controlled testing facility that mimics upstream and midstream natural gas operations. The study completed 357 individual measurements across 26 controlled releases and 71 camera positions for release rates between 0.1 kg Ch4/h and 2.9 kg Ch4/h of compressed natural gas (which accounts for more than 90% of typical component-level leaks in several production facilities). The majority (75%) of measurements were within a quantification factor of 3 (quantification error of -67% to 200%) with individual errors between -90% and 831%, which reduced to -79% to +297% when the mean of estimates of the same controlled release from multiple camera positions was considered. Performance improved with increasing release rate, using clear sky as plume background, and at wind speeds ≤1 mph relative to other measurement conditions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11244249PMC
http://dx.doi.org/10.3390/s24134044DOI Listing

Publication Analysis

Top Keywords

optical gas
12
gas imaging
12
qogi system
12
quantification performance
8
quantitative optical
8
imaging qogi
8
controlled release
8
natural gas
8
camera positions
8
gas
6

Similar Publications

Alzheimer's disease (AD) is the most prevalent neurodegenerative disorder. Antiamyloid antibody treatments modestly slow disease progression in mild dementia due to AD. Emerging evidence shows that homeostatic dysregulation of the brain immune system, especially that orchestrated by microglia, plays an important role in disease onset and progression.

View Article and Find Full Text PDF

Dynamic Covalent Sulfur-Selenium Rich Polymers via Inverse Vulcanization for High Refractive Index, High Transmittance, and UV Shielding Materials.

Macromol Rapid Commun

January 2025

College of Chemistry and Chemical Engineering, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Material, Northwest Normal University, Lanzhou, Gansu, 730070, P. R. China.

Recent advancements in inverse vulcanization have led to the development of sulfur-rich polymers with diverse applications. However, progress is constrained by the harsh high-temperature reaction conditions, limited applicability, and the generation of hazardous HS gas. This study presents an induced IV method utilizing selenium octanoic acid, yielding sulfur-selenium rich polymers with full atom economy, even at a low-temperatures of 100-120 °C.

View Article and Find Full Text PDF

A novel balloon-type photoacoustic cell (BTPAC) is proposed to facilitate the detection limitations of acetylene (CH) gas achieving ppb level. Here, an ellipsoidal photoacoustic cavity is employed as the platform for gas-light interaction. By strategically directing the excitation source towards the focal point of the ellipsoidal cavity, ensuring its trajectory traverses the focal point upon each reflection from the interior walls.

View Article and Find Full Text PDF

Nanoporous organic polymers (NPOPs) have emerged as versatile materials with robust thermal stability, large surface area (up to 2500 m g), and customizable porosity, making them ideal candidates for advanced hydrogen (H) storage applications. This review provides a comprehensive analysis of various NPOPs, including covalent organic frameworks (COFs), hypercrosslinked polymers (HCLPs), conjugated microporous polymers (CMPs), and porous aromatic frameworks (POAFs). Notably, these materials demonstrate superior H storage capacities, achieving up to 10 wt% at cryogenic temperatures, which is essential for applying H as a clean energy carrier.

View Article and Find Full Text PDF

Anthropogenic activities have led to increased stress on our marine and other aquatic environments. There is a pressing need to monitor, measure, understand and mitigate causes of these pressures. This paper presents a novel optical head for monitoring and measuring marine based optical phenomena.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!