Nanocomposites with polymer matrix provide tremendous opportunities to investigate new functions beyond those of traditional materials. The global community is gradually tending toward the use of composite and nanocomposite materials. This review is aimed at reporting the recent developments and understanding revolving around hybridizing fillers for composite materials. The influence of various analyses, characterizations, and mechanical properties of the hybrid filler are considered. The introduction of hybrid fillers to polymer matrices enhances the macro and micro properties of the composites and nanocomposites resulting from the synergistic interactions between the hybrid fillers and the polymers. In this review, the synergistic impact of using hybrid fillers in the production of developing composite and nanocomposite materials is highlighted. The use of hybrid fillers offers a viable way to improve the mechanical, thermal, and electrical properties of these sophisticated materials. This study explains the many tactics and methodologies used to install hybrid fillers into composite and nanocomposite matrices by conducting a thorough analysis of recent research. Furthermore, the synergistic interactions of several types of fillers, including organic-inorganic, nano-micro, and bio-based fillers, are fully investigated. The performance benefits obtained from the synergistic combination of various fillers are examined, as well as their prospective applications in a variety of disciplines. Furthermore, the difficulties and opportunities related to the use of hybrid fillers are critically reviewed, presenting perspectives on future research paths in this rapidly expanding area of materials science.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11244371 | PMC |
http://dx.doi.org/10.3390/polym16131907 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!