AI Article Synopsis

  • * Using various testing methods and simulations, researchers explored how gutta-percha interacts with asphalt and found optimal mixing temperatures and effective preparation methods for gutta-percha-modified asphalt (GPMA).
  • * The results revealed that eucommia ulmoides gum (EUG) is compatible with asphalt and increases its thermal stability, while sulfur-vulcanized eucommia ulmoides gum (SEUG) has a strong effect on high temperature performance but not on low temperature cracking resistance; different manufacturing processes were identified for each type of modified asphalt.

Article Abstract

Presently, there is a significant focus on the investigation and advancement of polymer-modified asphalt that is both high-performing and environmentally sustainable. This study thoroughly examined the performance and modification mechanism of gutta-percha (GP) as a novel asphalt modifier. The investigation was conducted using a combination of macro- and microscopic testing, as well as molecular dynamics simulations. This work primarily examined the compatibility of GP with asphalt molecular modeling. This paper used molecular dynamics to identify the most suitable mixing temperature. Next, the gray correlation theory was used to discuss the most effective method for preparing gutta-percha-modified asphalt (GPMA). The macro-rheological tests and microscopic performance analysis provided a full understanding of the impact of GP on asphalt properties and the process of alteration. The findings indicate that eucommia ulmoides gum (EUG) exhibits good compatibility with asphalt, while sulfur-vulcanized eucommia ulmoides gum (SEUG) does not demonstrate compatibility with asphalt. Both EUG and SEUG enhance the thermal stability and resistance to deformation of asphalt at high temperatures, with SEUG having a particularly notable effect. However, both additives do not improve the resistance of asphalt to cracking at low temperatures. The manufacturing method for EUG-modified asphalt (EUGMA) involves physical mixing, whereas sulfur-vulcanized eucommia ulmoides gum-modified asphalt (SEUGMA) involves physical mixing together with certain chemical processes. This research establishes a theoretical foundation for the advancement of GP as a novel environmentally friendly and highly effective asphalt modification.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11243986PMC
http://dx.doi.org/10.3390/polym16131860DOI Listing

Publication Analysis

Top Keywords

asphalt
13
compatibility asphalt
12
eucommia ulmoides
12
performance modification
8
modification mechanism
8
gutta-percha-modified asphalt
8
molecular dynamics
8
ulmoides gum
8
sulfur-vulcanized eucommia
8
involves physical
8

Similar Publications

In order to solve the problems of rutting and early fatigue cracks in emulsified asphalt cold recycled pavement, and the shortage of natural stone resources and new environmental hazards caused by the use of traditional limestone powder filler. In this study, coal gangue powder was added to prepare Emulsified Asphalt Mastic (EAM) to improve the rheological properties and fatigue performance. A series of tests, including frequency scanning, temperature scanning, Multiple Stress Creep Recovery (MSCR), Linear Amplitude Scanning (LAS), and Fourier Transform Infrared spectroscopy (FTIR) were conducted.

View Article and Find Full Text PDF

Objective: To assess the utility of a bespoke smartphone app to map noise and vibration exposure across neonatal road ambulance journeys.

Design And Setting: Prospective observational study of ambulance journeys across a large UK neonatal transport service. Smartphones, with an in-house developed app, were secured to incubator trolleys to collect vibration and noise data for comparison with international standards.

View Article and Find Full Text PDF

Deposition history of polycyclic aromatic hydrocarbons in tibetan lakes indicate the effectiveness of protected area establishment.

J Environ Manage

January 2025

School of the Earth Sciences and Resources, China University of Geosciences, Beijing, 100083, China; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing, 100083, China.

The effectiveness of protected areas in mitigating human impacts remains uncertain due to limited in-situ data; however, atmospheric micropollutant deposition in alpine lakes may provide a quantitative approach to evaluate anthropogenic pressures and threats. In this study, the temporal changes of polycyclic aromatic hydrocarbons (PAHs) inside/outside the Siling Co protected area, Tibet were reconstructed. The varying anthropogenic impact history suggested that, unlike the dominance of residential activities (i.

View Article and Find Full Text PDF

Sustainable pavement is essential for country development, offering durable, environmentally friendly, and cost-effective infrastructure. For Malaysia, sustainable pavement supports Sustainable Development Goals (SDGs) 9 and 11 while addressing road deterioration caused by increasing traffic volumes and loads. This deterioration shortens pavement service life and necessitates frequent maintenance, driving the need for innovative solutions.

View Article and Find Full Text PDF

. This research aimed to describe the distribution and occurrence of work-related collisions involving paramedics across Quebec and compare these results with collisions of general vehicles. .

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!