In medicine, the occurrence of antibiotic resistance was becoming a critical concern. At the same time, traditional synthesis methods of antibacterial agents often lead to environmental pollution due to the use of toxic chemicals. To address these problems, this study applies the green synthesis method to create a novel composite using a polymer blend (M8) consisting of chitosan (CS), polyethylene glycol (PEG), polyvinyl alcohol (PVA), polyvinylpyrrolidone (PVP), and silver nanoparticles. The results show that the highest ratio of AgNO:M8 was 0.15 g/60 mL, which resulted in a 100% conversion of Ag to Ag after 10 h of reaction at 80 °C. Hence, using M8, Ag nanoparticles (AgNPs) were synthesized at the average size of 42.48 ± 10.77 nm. The AgNPs' composite (M8Ag) was used to inhibit the growth of (), (), and (). At 6.25% dilution of M8Ag, the growth of these mentioned bacteria was inhibited. At the same dilution percentage of M8Ag, was killed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11244051PMC
http://dx.doi.org/10.3390/polym16131820DOI Listing

Publication Analysis

Top Keywords

silver nanoparticles
8
chitosan polyethylene
8
polyethylene glycol
8
polyvinyl alcohol
8
antibacterial agents
8
surface modifications
4
modifications silver
4
nanoparticles chitosan
4
glycol polyvinyl
4
alcohol polyvinylpyrrolidone
4

Similar Publications

WO/Ag/TiO composite photoelectrodes were formed via the high-temperature calcination of a WO film, followed by the sputtering of a very thin silver film and deposition of an overlayer of commercial TiO nanoparticles. These synthetic photoanodes were characterized in view of the oxidation of a model organic compound glucose combined with the generation of hydrogen at a platinum cathode. During prolonged photoelectrolysis under simulated solar light, these photoanodes demonstrated high and stable photocurrents of ca.

View Article and Find Full Text PDF

Today, air pollution is a global environmental problem. A huge amount of explosive and combustible gas emissions that negatively affect nature and human health. Gas sensors are one of the ways to prevent this impact.

View Article and Find Full Text PDF

Bacterial infections are a common cause of clinical complications associated with the use of orthodontic microimplants. Biofilm formation on their surfaces and subsequent infection of peri-implant tissues can result in either exfoliation or surgical removal of these medical devices. In order to improve the properties of microimplants, hybrid coatings enriched with silver nanoparticles, calcium, and phosphorus were investigated.

View Article and Find Full Text PDF

Nanotechnological methods for creating multifunctional fabrics are attracting global interest. The incorporation of nanoparticles in the field of textiles enables the creation of multifunctional textiles exhibiting UV irradiation protection, antimicrobial properties, self-cleaning properties and photocatalytic. Nanomaterials-loaded textiles have many innovative applications in pharmaceuticals, sports, military the textile industry etc.

View Article and Find Full Text PDF

Cytotoxic Effects of ZnO and Ag Nanoparticles Synthesized in Microalgae Extracts on PC12 Cells.

Mar Drugs

December 2024

Interdepartmental Centre of Environmental Science and Engineering (CINSA), University of Cagliari, Via San Giorgio 12, 09124 Cagliari, Italy.

The green synthesis of silver (Ag) and zinc oxide (ZnO) nanoparticles (NPs), as well as Ag/AgO/ZnO nanocomposites (NCs), using polar and apolar extracts of , offers a sustainable method for producing nanomaterials with tunable properties. The impact of the synthesis environment and the nanomaterials' characteristics on cytotoxicity was evaluated by examining reactive species production and their effects on mitochondrial bioenergetic functions. Cytotoxicity assays on PC12 cells, a cell line originated from a rat pheochromocytoma, an adrenal medulla tumor, demonstrated that Ag/AgO NPs synthesized with apolar (Ag/AgO NPs A) and polar (Ag/AgO NPs P) extracts exhibited significant cytotoxic effects, primarily driven by Ag ion release and the disruption of mitochondrial function.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!