Molecular Dynamics Simulation of Cumulative Microscopic Damage in a Thermosetting Polymer under Cyclic Loading.

Polymers (Basel)

Department of Materials Science and Technology, Graduate School of Advanced Engineering, Tokyo University of Science, Tokyo 125-8585, Japan.

Published: June 2024

To develop durable composite materials, it is crucial to elucidate the correlation between nanoscale damage in thermosetting resins and the degradation of their mechanical properties. This study aims to investigate this correlation by performing cyclic loading tests on the cross-linked structure of diglycidyl ether bisphenol A (DGEBA) and 4,4'-diaminodiphenyl sulfone (44-DDS) using all-atom molecular dynamics (MD) simulations. To accurately represent the nanoscale damage in MD simulations, a bond dissociation algorithm based on interatomic distance criteria is applied, and three characteristics are used to quantify the microscopic damage: stress-strain curves, entropy generation, and the formation of voids. As a result, the number of covalent bond dissociations increases with both the cyclic loading and its amplitude, resulting in higher entropy generation and void formation, causing the material to exhibit inelastic behavior. Furthermore, our findings indicate the occurrence of a microscopic degradation process in the cross-linked polymer: Initially, covalent bonds align with the direction of the applied load. Subsequently, tensioned covalent bonds sequentially break, resulting in significant void formation. Consequently, the stress-strain curves exhibit nonlinear and inelastic behavior. Although our MD simulations employ straightforward criteria for covalent bond dissociation, they unveil a distinct correlation between the number of bond dissociations and microscale damage. Enhancing the algorithm holds promise for yielding more precise predictions of material degradation processes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11243922PMC
http://dx.doi.org/10.3390/polym16131813DOI Listing

Publication Analysis

Top Keywords

cyclic loading
12
molecular dynamics
8
microscopic damage
8
damage thermosetting
8
nanoscale damage
8
bond dissociation
8
stress-strain curves
8
entropy generation
8
covalent bond
8
bond dissociations
8

Similar Publications

In situ growth of defective ZIF-8 on TEMPO-oxidized cellulose nanofibrils for rapid response release of curcumin in food preservation.

Carbohydr Polym

March 2025

Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China. Electronic address:

Uncontrolled release of active agents in active packaging reduces antimicrobial efficacy, hindering the effective protection of perishable products from microbial infection. Herein, a novel defective engineering was proposed to design defective and hollow ZIF-8 structures grown on TEMPO oxidized cellulose nanofibrils (TOCNFs) and use them as fast-reacting nanocarriers for loading and controlled release curcumin (Cur) in sodium alginate (SA) active packaging systems (CZT-Cur-SA). By employing stable chelation between tannic acid (TA) and ZIF-8 zinc ions, the connections between zinc ions and imidazole ligands were severed to form a loose and hollow structure, which facilitates the rapid reaction and release of active ingredients triggered by pH changes in the microenvironment.

View Article and Find Full Text PDF

Purpose: To investigate how varying ferrule heights and the number of glass fiber posts affect fracture resistance and behavior of endodontically treated maxillary first premolars with substantial loss of tooth structure.

Materials And Methods: Twenty-four extracted endodontically treated human maxillary first premolars were divided into three groups (n = 8) based on ferrule height and post number. The groups were as follows: premolars of 2 mm ferrule height that were restored with single posts (control group), premolars of 0.

View Article and Find Full Text PDF

Purpose: To evaluate the maximal load to failure, cyclic displacement, stiffness, and modes of failure of onlay subpectoral biceps tenodesis with an intramedullary unicortical metal button (MB) versus an inlay, all-suture Caspari-Weber (CW) technique.

Methods: Sixteen matched paired human cadaveric proximal humeri were randomly allocated for subpectoral BT with either CW or MB using a high-strength suture (N = 16; 8 male, 8 female, mean age = 82.5 years, range 62-99 years).

View Article and Find Full Text PDF

Rubber is widely used in situations involving cyclic loads, and the influence of temperature on rubber properties is particularly pronounced under cyclic loading. In this study, mechanical property tests and crack propagation tests of carbon black-filled hydrogenated nitrile butadiene rubber were conducted at four different operating temperatures. Based on the results of the crack propagation tests, the temperature-dependent characteristics of the Paris-Erdogan parameters and strain energy density were clarified.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!