Plant flowering time is affected by endogenous and exogenous factors, but its variation patterns among different populations of a species has not been fully established. In this study, 27 accessions were used to investigate the relationship between autonomous pathway gene methylation, gene expression and flowering time variation. DNA methylation analysis, RT-qPCR and transgenic verification showed that variation in the flowering time among the populations ranged from 19 to 55 days and was significantly correlated with methylation of the coding regions of six upstream genes in the autonomous pathway, (), (), (), (), () and (), as well as their relative expression levels. The expression of and () was modified separately through degenerate codon substitution of cytosine and led to earlier flowering of transgenic plants by 8 days and 25 days, respectively. An accurate determination of methylated sites in and () among those transgenic plants and the recipient Col-0 verified the close relationship between the number of methylation sites, expression and flowering time. Our findings suggest that the methylation variation of these six key upstream transcription factors was associated with the gene expression level of the autonomous pathway and flowering time in Arabidopsis. The () and genes in transgenic plants tended to be hypermethylated, which could be a protective mechanism for plants. However, modification of gene sequences through degenerate codon substitution to reduce cytosine can avoid hypermethylated transferred genes in transgenic plants. It may be possible to partially regulate the flowering of plants by modified trans-epigenetic technology.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11242178PMC
http://dx.doi.org/10.3390/ijms25137478DOI Listing

Publication Analysis

Top Keywords

flowering time
24
autonomous pathway
16
transgenic plants
16
dna methylation
8
flowering
8
gene expression
8
expression flowering
8
degenerate codon
8
codon substitution
8
genes transgenic
8

Similar Publications

Genome-wide identification and expression analysis of the WRKY gene family in Mikania micrantha.

BMC Genomics

January 2025

College of Biological Science and Food Engineering, Southwest Forestry University, Kunming, Yunnan Province, 650224, China.

Background: WRKY transcription factors (TFs) regulate plant responses to environmental stimuli and development, including flowering. Despite extensive research on different species, their role in the invasive plant Mikania micrantha remains to be explored. The aim of this study was to identify and analyze WRKY genes in M.

View Article and Find Full Text PDF

Dienia is a small, pantropical genus of epidendroid Malaxideae orchids. The floral lip is upwardly directed and does not serve as a landing platform for pollinators. This role has been assumed by sepals and/or gynostemium or whole inflorescence.

View Article and Find Full Text PDF

Azaleas (Rhododendron simsii) are popular ornamental woody plants known for their bright colors; however, very limited studies have been reported on the process of flower petal pigmentation. In this study, we found significant differences in the anthocyanin contents of petals from different colored azaleas, and the results of quantitative real-time PCR indicated that the R2R3 MYB genes, RsMYB12, RsMYB90, and RsMYB123, showed significant expression changes during the petal coloration in azalea petals; therefore, we hypothesized that RsMYB12, RsMYB90, and RsMYB123 might involve in the coloring process of azalea petals by regulating anthocyanin synthesis. This work provides insights into the underlying mechanisms of petal pigmentation in R.

View Article and Find Full Text PDF

The collective surface motility and swarming behavior of microbes play a crucial role in the formation of polymicrobial communities, shaping ecosystems as diverse as animal and human microbiota, plant rhizospheres, and various aquatic environments. In the human oral microbiota, T9SS-driven gliding bacteria transport non-motile microbes and bacteriophages as cargo, thereby influencing the spatial organization and structural complexity of these polymicrobial communities. However, the physical rules governing the dispersal of T9SS-driven bacterial swarms are barely understood.

View Article and Find Full Text PDF
Article Synopsis
  • Balanced mating type polymorphisms provide insight into the evolution of sexual reproduction strategies in plants, particularly within the Juglandaceae family (like walnuts and hickories).
  • Researchers have identified two distinct Mendelian inheritance mechanisms linked to ancient DNA polymorphisms that dictate whether flowers develop male or female first, showing a 1:1 genetic ratio.
  • A dominant haplotype associated with female-first flowering is linked to a gene related to trehalose-6-phosphate metabolism, suggesting complex regulation of gene expression and hints at sex chromosome-like evolution in these plants.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!