This research compared how different levels of dietary crude protein (CP) and apparent metabolizable energy (AME) affect the growth performance, nitrogen utilization, serum parameters, protein synthesis, and amino acid (AA) metabolism in broilers aged 1 to 10 days. In a 4 × 3 factorial experimental design, the broilers were fed four levels of dietary CP (20%, 21%, 22%, and 23%) and three levels of dietary AME (2800 kcal/kg, 2900 kcal/kg, and 3000 kcal/kg). A total of 936 one-day-old male Arbor Acres broilers were randomly allocated to 12 treatments with 6 replications each. Growth performance, nitrogen utilization, serum parameter, gene expression of protein synthesis, and AA metabolism were evaluated at 10 d. The results revealed no interaction between dietary CP and AME levels on growth performance ( > 0.05). However, 22% and 23% CP enhanced body weight gain (BWG), the feed conversion ratio (FCR), total CP intake, and body protein deposition but had a detrimental effect on the protein efficiency ratio (PER) compared to 20% or 21% CP ( < 0.05). Broilers fed diets with 2800 kcal/kg AME showed increased feed intake (FI) and inferior PER ( < 0.05). Broilers fed diets with 3000 kcal/kg AME showed decreased muscle mRNA expression of mammalian target of the rapamycin (mTOR) and Atrogin-1 compared to those fed diets with 2800 kcal/kg and 2900 kcal/kg AME ( < 0.05). Increasing dietary CP level from 20% to 23% decreased muscle mTOR and increased S6K1 mRNA expression, respectively ( < 0.05). The muscle mRNA expression of Atrogin-1 was highest for broilers fed 23% CP diets ( < 0.05). The mRNA expression of betaine homocysteine methyltransferase (BHMT) and Liver alanine aminotransferase of the 22% and 23% CP groups were higher than those of 20% CP ( < 0.05). Significant interactions between dietary CP and AME levels were observed for muscle AMPK and liver lysine-ketoglutarate reductase (LKR) and branched-chain alpha-keto acid dehydrogenase (BCKDH) mRNA expression ( < 0.05). Dietary AME level had no effect on muscle AMPK mRNA expression for broilers fed 21% and 22% CP diets ( > 0.05), whereas increasing dietary AME levels decreased AMPK mRNA expression for broilers fed 23% CP diets ( < 0.05). The mRNA expression of LKR and BCKDH was highest for broilers fed the diet with 2800 kcal/kg AME and 22% CP, while it was lowest for broilers fed the diet with 3000 kcal/kg AME and 20% CP. The findings suggest that inadequate energy density hindered AA utilization for protein synthesis, leading to increased AA catabolism for broilers aged 1 to 10 days, and a dietary CP level of 22% and an AME level of 2900 to 3000 kcal/kg may be recommended based on performance and dietary protein utilization.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11242162 | PMC |
http://dx.doi.org/10.3390/ijms25137431 | DOI Listing |
Trop Anim Health Prod
January 2025
Department of Agroindustrial Science and Technology, Federal University of Pelotas, Rio Grande Do Sul, Brazil.
During the harvest of Ilex paraguariensis, approximately 2-5 tons per hectare of thick stems are left on the soil surface. The outer portion of these stems, referred to as the coproduct, constitutes 30% of the total residue mass. Although this coproduct has been partially characterized in terms of its phytochemical profile, its technological applications remain unexplored.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Animal Science, State University of Londrina (UEL), Londrina, Paraná, Brazil.
Chlorella vulgaris has antioxidant, antimicrobial, and anti-inflammatory properties, as well as the probiotic that is important for keeping the intestinal microbiota balanced. The objective was to test the impact of supplementation with microalgae and/or probiotics on broiler chickens' performance, immunity, and intestinal microbiota. The experimental design was in randomized blocks in a 4x2 factorial scheme, with four levels of inclusion of C.
View Article and Find Full Text PDFAnimals (Basel)
January 2025
College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China.
Low-protein (LPRO) diets can effectively reduce feed costs and decrease environmental pollution, making them an important pathway to enhance the sustainability of livestock production. However, they may have adverse effects on the growth performance of broiler chickens, which has limited their widespread application. This study aims to explore the impact of adding protease (PRO) to LPRO diets on the growth performance of broiler chickens, especially under conditions with or without the presence of (BC), in order to provide theoretical support for the scientific application and promotion of LPRO feeds.
View Article and Find Full Text PDFAnimals (Basel)
January 2025
Institute of Animal and Dairy Sciences, University of Agriculture, Faisalabad 38000, Pakistan.
This study aimed to assess the effects of different arginine (Arg) to lysine (Lys) ratios on feed intake, nutrient digestibility, growth performance, carcass characteristics, and antibody titers of Newcastle disease (ND) and infectious bronchitis (IB) disease in broilers during 35 days of trial. For this purpose, a total of 816 day-old broiler birds having an average weight of 38 ± 3 g were divided into six dietary treatments in such a way that each treatment had eight replicates and each replicate had 17 birds. The treatments were 0.
View Article and Find Full Text PDFAnimals (Basel)
January 2025
Joint Lab ANR FeedInTech (FIT: SONAS/Nor-Feed), 49070 Beaucouzé, France.
This study aimed to investigate the effects of a Standardized Natural Citrus Extract (SNCE) on broiler chickens' growth performance, gut health, carcass quality, and welfare. A total of 756 one-day-old Ross 308 males were randomly assigned to two groups: a control group (CTL) fed with a standard diet, and a citrus group (SNCE) fed with the same standard diet supplemented with 250 g/ton of feed of SNCE. Growth performance was recorded weekly until d 35, while mortality was recorded daily.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!