Brain pathological changes impair cognition early in disease etiology. There is an urgent need to understand aging-linked mechanisms of early memory loss to develop therapeutic strategies and prevent the development of cognitive impairment. Tusc2 is a mitochondrial-resident protein regulating Ca fluxes to and from mitochondria impacting overall health. We previously reported that female mice develop chronic inflammation and age prematurely, causing age- and sex-dependent spatial memory deficits at 5 months old. Therefore, we investigated Tusc2-dependent mechanisms of memory impairment in 4-month-old mice, comparing changes in resident and brain-infiltrating immune cells. Interestingly, female mice demonstrated a pro-inflammatory increase in astrocytes, expression of IFN-γ in CD4 T cells and Granzyme-B in CD8T cells. We also found fewer FOXP3 T-regulatory cells and Ly49G NK and Ly49G NKT cells in female Tusc2 brains, suggesting a dampened anti-inflammatory response. Moreover, hippocampi exhibited Tusc2- and sex-specific protein changes associated with brain plasticity, including mTOR activation, and Calbindin and CamKII dysregulation affecting intracellular Ca dynamics. Overall, the data suggest that dysregulation of Ca-dependent processes and a heightened pro-inflammatory brain microenvironment in mice could underlie cognitive impairment. Thus, strategies to modulate the mitochondrial Tusc2- and Ca- signaling pathways in the brain should be explored to improve cognitive health.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11242373 | PMC |
http://dx.doi.org/10.3390/ijms25137406 | DOI Listing |
J Biochem Mol Toxicol
January 2025
Medical Experiment Center, Shaanxi University of Chinese Medicine, Xianyang, China.
Bisphenol A (BPA), an environmental endocrine disrupting chemical, is one of the most widely used chemicals in the world and is widely distributed in the external environment, specifically in food, water, dust, and soil. BPA exposure is associated with abnormal cognitive behaviors. However, the underlying mechanism remains unclear.
View Article and Find Full Text PDFNeurochem Res
January 2025
Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, China.
Trehalose has neuroprotective effects in neurodegenerative diseases. This study aimed to explore the impact of trehalose on traumatic brain injury (TBI) by investigating its role in neuroprotection. The TBI mice model was established utilizing the cortical impact technique followed by trehalose treatment.
View Article and Find Full Text PDFJ Clin Med
December 2024
Degenerative and Chronic Diseases of the Faculty of Health Sciences (FGW), University Potsdam, 14469 Potsdam, Germany.
: About 65 million people worldwide are affected by epilepsy, with temporal lobe epilepsy being the most common type resistant to drugs and often requiring surgical treatment. Although open surgical approaches, such as temporal lobectomy, have been the method of choice for decades, minimally invasive MRgLITT has demonstrated promising results. However, it remains unknown whether patients who underwent one of these two approaches would show better performance on vestibulo-spatial tasks.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Key Laboratory of Concrete and Pre-Stressed Concrete Structures of the Ministry of Education, Southeast University, Nanjing 210096, China.
Monitoring existing cracks is a critical component of structural health monitoring in bridges, as temperature fluctuations significantly influence crack development. The study of the Huai'an Bridge indicated that concrete cracks predominantly occur near the central tower, primarily due to temperature variations between the inner and outer surfaces. This research aims to develop a deep learning model utilizing Long Short-Term Memory (LSTM) neural networks to predict crack depth based on the thermal variations experienced by the main tower.
View Article and Find Full Text PDFSensors (Basel)
December 2024
College of Information Science and Engineering, Hunan Normal University, Changsha 410081, China.
Early detection of autism spectrum disorder (ASD) is particularly important given its insidious qualities and the high cost of the diagnostic process. Currently, static functional connectivity studies have achieved significant results in the field of ASD detection. However, with the deepening of clinical research, more and more evidence suggests that dynamic functional connectivity analysis can more comprehensively reveal the complex and variable characteristics of brain networks and their underlying mechanisms, thus providing more solid scientific support for computer-aided diagnosis of ASD.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!