AI Article Synopsis

  • GRT-X, a compound targeting mitochondrial translocator protein (TSPO) and Kv7.2/3 potassium channels, has been shown to aid recovery from cervical spine injuries, promoting axonal growth in dorsal root ganglion (DRG) neurons.
  • When tested on DRG explants from wild-type and TSPO knockout mice, GRT-X significantly stimulated axonal growth, while targeting TSPO with agonist XBD173 had delayed effects and activators/inhibitors of Kv7 channels reduced growth.
  • The compound GRT-X increased gene expression related to axonal growth and myelination in co-cultures, but its effects were lost in TSPO knockout cultures, suggesting other mechanisms involved that need further exploration

Article Abstract

GRT-X, which targets both the mitochondrial translocator protein (TSPO) and the Kv7.2/3 (KCNQ2/3) potassium channels, has been shown to efficiently promote recovery from cervical spine injury. In the present work, we investigate the role of GRT-X and its two targets in the axonal growth of dorsal root ganglion (DRG) neurons. Neurite outgrowth was quantified in DRG explant cultures prepared from wild-type C57BL6/J and TSPO-KO mice. TSPO was pharmacologically targeted with the agonist XBD173 and the Kv7 channels with the activator ICA-27243 and the inhibitor XE991. GRT-X efficiently stimulated DRG axonal growth at 4 and 8 days after its single administration. XBD173 also promoted axonal elongation, but only after 8 days and its repeated administration. In contrast, both ICA27243 and XE991 tended to decrease axonal elongation. In dissociated DRG neuron/Schwann cell co-cultures, GRT-X upregulated the expression of genes associated with axonal growth and myelination. In the TSPO-KO DRG cultures, the stimulatory effect of GRT-X on axonal growth was completely lost. However, GRT-X and XBD173 activated neuronal and Schwann cell gene expression after TSPO knockout, indicating the presence of additional targets warranting further investigation. These findings uncover a key role of the dual mode of action of GRT-X in the axonal elongation of DRG neurons.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11242890PMC
http://dx.doi.org/10.3390/ijms25137327DOI Listing

Publication Analysis

Top Keywords

axonal growth
20
axonal elongation
12
grt-x
8
dorsal root
8
axonal
8
tspo kv72/3
8
grt-x targets
8
drg neurons
8
grt-x axonal
8
drg
6

Similar Publications

A generative model of the connectome with dynamic axon growth.

Netw Neurosci

December 2024

Department of Biomedical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Melbourne, VIC, Australia.

Connectome generative models, otherwise known as generative network models, provide insight into the wiring principles underpinning brain network organization. While these models can approximate numerous statistical properties of empirical networks, they typically fail to explicitly characterize an important contributor to brain organization-axonal growth. Emulating the chemoaffinity-guided axonal growth, we provide a novel generative model in which axons dynamically steer the direction of propagation based on distance-dependent chemoattractive forces acting on their growth cones.

View Article and Find Full Text PDF

Chronic complete spinal cord injury (SCI) is difficult to treat because of scar formation and cavitary lesions. While human iPS cell-derived neural stem/progenitor cell (hNS/PC) therapy shows promise, its efficacy is limited without the structural support needed to address cavitary lesions. Our study investigated a combined approach involving surgical scar resection, decellularized extracellular matrix (dECM) hydrogel as a scaffold, and hNS/PC transplantation.

View Article and Find Full Text PDF

Mammalian sterile20-like kinase 1 (MST1), a serine/threonine kinase frequently expressed, has emerged as pivotal modulator of multiple physiological and pathological conditions such as cellular growth, programmed cell death, oxidative stress, neurodegeneration, inflammation, and synaptic plasticity in the central nervous system. Various neurological diseases are associated with the activation of MST1. Epilepsy is a severe neurological disorder characterized by abrupt abnormal electrical activity in the brain and recurring spontaneous seizures.

View Article and Find Full Text PDF

Glaucoma encompasses a spectrum of disorders characterized by the chronic degeneration of retinal ganglion cell (RGC) axons and the progressive loss of RGCs, resulting in visual impairment. In this study, we investigated the effect of autophagy deficiency on two glaucoma hypertensive models, the DBA/2J spontaneous glaucoma model, and the TGFβ2 (transforming growth factor β2) chronic ocular hypertensive model. For this, we used the and DBA/2J- mice, this latter generated in our laboratory via CRISPR/Cas9 technology, which display impaired autophagy.

View Article and Find Full Text PDF

Identification of key genes related to growth of largemouth bass () based on comprehensive transcriptome analysis.

Front Mol Biosci

December 2024

State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Hydrobiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China.

Introduction: Largemouth bass is an economically important farmed freshwater fish species that has delicious meat, no intermuscular thorns, and rapid growth rates. However, the molecular regulatory mechanisms underlying the different growth and developmental stages of this fish have not been reported.

Methods: In this study, we performed histological and transcriptomic analyses on the brain and dorsal muscles of largemouth bass at different growth periods.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!