In response to biotic and abiotic stresses, the WRKY gene family plays a crucial role in plant growth and development. This study focused on and involved genome-wide identification of WRKY gene family members, clarification of their molecular evolutionary characteristics, and comprehensive mapping of their expression profiles under diverse abiotic stress conditions. A total of 60 WRKY gene family members were identified, and their phylogenetic classification revealed three distinct groups. A conserved motif analysis underscored the significant conservation of motif 1 and motif 2 among the majority of proteins, with proteins within the same class sharing analogous gene structures. Furthermore, an examination of cis-acting elements and protein interaction networks revealed several genes implicated in abiotic stress responses in . Transcriptomic data were utilized to analyze the expression patterns of WRKY family members under drought and waterlogged conditions, with subsequent validation by quantitative real-time PCR (RT-qPCR) experiments. Notably, exhibited significant expression modulation under drought stress; responded prominently to waterlogging stress; and , , and demonstrated altered expression under both drought and waterlogging stresses. This study revealed the candidate genes that potentially play a pivotal role in enhancing abiotic stress resilience in . The findings have provided valuable insights and knowledge that can guide further research aimed at understanding and addressing the impacts of abiotic stress within this species.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11242546PMC
http://dx.doi.org/10.3390/ijms25137280DOI Listing

Publication Analysis

Top Keywords

wrky gene
16
gene family
16
abiotic stress
16
family members
12
drought waterlogging
8
waterlogging stresses
8
stress
6
wrky
5
gene
5
family
5

Similar Publications

Multi Characteristic Analysis of Vascular Cambium Cells in Reveals Its Anti-Aging Strategy.

Plants (Basel)

December 2024

Xinjiang Production and Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, Desert Poplar Research Center of Tarim University, College of Life Science and Technology, Tarim University, Alar 843300, China.

All multicellular organisms undergo senescence, but the continuous division of the vascular cambium in plants enables certain tree species to survive for hundreds or even thousands of years. Previous studies have focused on the development of the vascular cambium, but the mechanisms regulating age-related changes remain poorly understood. This study investigated age-related changes in the vascular cambium of trees aged 50 to 350 years.

View Article and Find Full Text PDF

Tea plant () is an important horticultural crop. The quality and productivity of tea plants is always threatened by various adverse environmental factors. Numerous studies have shown that intercropping tea plants with other plants can greatly improve the quality of their products.

View Article and Find Full Text PDF

Deciphering Drought Resilience in Solanaceae Crops: Unraveling Molecular and Genetic Mechanisms.

Biology (Basel)

December 2024

Wulanchabu Academy of Agricultural and Forestry Sciences, Wulanchabu 012000, China.

The Solanaceae family, which includes vital crops such as tomatoes, peppers, eggplants, and potatoes, is increasingly impacted by drought due to climate change. Recent research has concentrated on unraveling the molecular mechanisms behind drought resistance in these crops, with a focus on abscisic acid (ABA) signaling pathways, transcription factors (TFs) like MYB (Myeloblastosis), WRKY (WRKY DNA-binding protein), and NAC (NAM, ATAF1/2, and CUC2- NAM: No Apical Meristem, ATAF1/2, and CUC2: Cup-shaped Cotyledon), and the omics approaches. Moreover, transcriptome sequencing (RNA-seq) has been instrumental in identifying differentially expressed genes (DEGs) crucial for drought adaptation.

View Article and Find Full Text PDF

is a traditional Chinese medicinal herb rich in various bioactive secondary metabolites, such as alkaloids and flavonoids, and exhibits remarkable resistance to abiotic stress. The WRKY transcription factor (TF) family is one of the largest plant-specific TF families and plays a crucial role in plant growth, development, and responses to abiotic stress. However, a comprehensive genome-wide analysis of the WRKY gene family in has not yet been conducted.

View Article and Find Full Text PDF

Genome-wide identification and expression analysis of the WRKY gene family in Mikania micrantha.

BMC Genomics

January 2025

College of Biological Science and Food Engineering, Southwest Forestry University, Kunming, Yunnan Province, 650224, China.

Background: WRKY transcription factors (TFs) regulate plant responses to environmental stimuli and development, including flowering. Despite extensive research on different species, their role in the invasive plant Mikania micrantha remains to be explored. The aim of this study was to identify and analyze WRKY genes in M.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!