Chimeric antigen receptor (CAR) T cells represent a revolutionary immunotherapy that allows specific tumor recognition by a unique single-chain fragment variable (scFv) derived from monoclonal antibodies (mAbs). scFv selection is consequently a fundamental step for CAR construction, to ensure accurate and effective CAR signaling toward tumor antigen binding. However, conventional in vitro and in vivo biological approaches to compare different scFv-derived CARs are expensive and labor-intensive. With the aim to predict the finest scFv binding before CAR-T cell engineering, we performed artificial intelligence (AI)-guided molecular docking and steered molecular dynamics analysis of different anti-CD30 mAb clones. Virtual computational scFv screening showed comparable results to surface plasmon resonance (SPR) and functional CAR-T cell in vitro and in vivo assays, respectively, in terms of binding capacity and anti-tumor efficacy. The proposed fast and low-cost in silico analysis has the potential to advance the development of novel CAR constructs, with a substantial impact on reducing time, costs, and the need for laboratory animal use.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11242627PMC
http://dx.doi.org/10.3390/ijms25137231DOI Listing

Publication Analysis

Top Keywords

molecular docking
8
docking steered
8
steered molecular
8
molecular dynamics
8
scfv selection
8
chimeric antigen
8
vitro vivo
8
car-t cell
8
scfv
5
artificial intelligence-powered
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!