One of the most significant diseases in the swine business, porcine reproductive and respiratory syndrome virus (PRRSV) causes respiratory problems in piglets and reproductive failure in sows. The PRRSV nucleocapsid (N) protein is essential for the virus' assembly, replication, and immune evasion. Stages in the viral replication cycle can be impacted by interactions between the PRRSV nucleocapsid protein and the host protein components. Therefore, it is of great significance to explore the interaction between the PRRSV nucleocapsid protein and the host. Nevertheless, no information has been published on the network of interactions between the nucleocapsid protein and the host proteins in primary porcine alveolar macrophages (PAMs). In this study, 349 host proteins interacting with nucleocapsid protein were screened in the PRRSV-infected PAMs through a liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based proteomics approach. Bioinformatics analysis, which included gene ontology annotation, Kyoto Encyclopedia of Genes and Genomes database enrichment, and a protein-protein interaction (PPI) network, revealed that the host proteins interacting with PRRSV-N may be involved in protein binding, DNA transcription, metabolism, and innate immune responses. This study confirmed the interaction between the nucleocapsid protein and the natural immune-related proteins. Ultimately, our findings suggest that the nucleocapsid protein plays a pivotal role in facilitating immune evasion during a PRRSV infection. This study contributes to enhancing our understanding of the role played by the nucleocapsid protein in viral pathogenesis and virus-host interaction, thereby offering novel insights for the prevention and control of PRRS as well as the development of vaccines.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11241482PMC
http://dx.doi.org/10.3390/ijms25137219DOI Listing

Publication Analysis

Top Keywords

nucleocapsid protein
32
host proteins
16
proteins interacting
12
prrsv nucleocapsid
12
protein host
12
protein
10
prrsv-infected pams
8
nucleocapsid
8
immune evasion
8
host
6

Similar Publications

Background: Numerous studies have assessed the risk of SARS-CoV-2 exposure and infection among health care workers during the pandemic. However, far fewer studies have investigated the impact of SARS-CoV-2 on essential workers in other sectors. Moreover, guidance for maintaining a safely operating workplace in sectors outside of health care remains limited.

View Article and Find Full Text PDF

Retroviruses carry a genomic intron-containing RNA with a long structured 5'-untranslated region, which acts either as a genome encapsidated in the viral progeny or as an mRNA encoding the key structural protein, Gag. We developed a single-molecule microscopy approach to simultaneously visualize the viral mRNA and the nascent Gag protein during translation directly in the cell. We found that a minority of the RNA molecules serve as mRNA and that they are translated in a fast and efficient process.

View Article and Find Full Text PDF

A novel electrochemical microsensor was constructed on a traditional acupuncture needle (AN) and used to monitor a biomarker of the SARS-CoV-2-N protein. The reversible interaction of the borate bond between the -diol in this glycoprotein and the phenylboronic acid in 4-mercaptophenylboronic acid (4-MPBA) was accomplished. This interaction was applied to anchor the SARS-CoV-2-N protein onto 4-MPBA, which was covalently self-assemblied onto electrodeposited AuNPs by the S-Au bond.

View Article and Find Full Text PDF

This study aimed to create a new recombinant virus by modifying the EV-A71 capsid protein, serving as a useful tool and model for studying human Enteroviruses. We developed a new screening method using EV-A71 pseudovirus particles to systematically identify suitable insertion sites and tag types in the VP1 capsid protein. The pseudovirus's infectivity and replication can be assessed by measuring postinfection luciferase signals.

View Article and Find Full Text PDF

Second-generation integrase strand transfer inhibitors (INSTIs) are strongly recommended for people living with HIV-1 (PLWH). The emergence of resistance to second-generation INSTIs has been infrequent and has not yet been a major issue in high-income countries. However, the delayed rollouts of these INSTIs in low- to middle-income countries during the COVID-19 pandemic combined with increased transmission of drug-resistant mutants worldwide are leading to an increase in INSTI resistance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!