Cytokines, chemokines, and interferons are released in response to viral infection with the ultimate aim of viral clearance. However, in SARS-CoV-2 infection, there is an imbalanced immune response, with raised cytokine levels but only a limited interferon response with inefficient viral clearance. Furthermore, the inflammatory response can be exaggerated, which risks both acute and chronic sequelae. Several observational studies have suggested a reduced risk of progression to severe COVID-19 in subjects with a higher omega-3 index. However, randomized studies of omega-3 supplementation have failed to replicate this benefit. Omega-3 fats provide important anti-inflammatory effects; however, fatty fish contains many other fatty acids that provide health benefits distinct from omega-3. Therefore, the immune health benefit of whole salmon oil (SO) was assessed in adults with mild to moderate COVID-19. Eleven subjects were randomized to best supportive care (BSC) with or without a full spectrum, enzymatically liberated SO, dosed at 4g daily, for twenty-eight days. Nasal swabs were taken to measure the change in gene expression of markers of immune response and showed that the SO provided both broad inflammation-resolving effects and improved interferon response. The results also suggest improved lung barrier function and enhanced immune memory, although the clinical relevance needs to be assessed in longer-duration studies. In conclusion, the salmon oil was well tolerated and provided broad inflammation-resolving effects, indicating a potential to enhance immune health.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11241394PMC
http://dx.doi.org/10.3390/ijms25136917DOI Listing

Publication Analysis

Top Keywords

salmon oil
12
immune health
12
enzymatically liberated
8
sars-cov-2 infection
8
viral clearance
8
immune response
8
interferon response
8
provided broad
8
broad inflammation-resolving
8
inflammation-resolving effects
8

Similar Publications

Assessing functional properties of diet protein hydrolysate and oil from fish waste on canine immune parameters, cardiac biomarkers, and fecal microbiota.

Front Vet Sci

November 2024

REQUIMTE, Network of Chemistry and Technology, LAQV, Laboratory for Green Chemistry, ICBAS, School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal.

Locally produced fish hydrolysate and oil from the agrifood sector comprises a sustainable solution both to the problem of fish waste disposal and to the petfood sector with potential benefits for the animal's health. This study evaluated the effects of the dietary replacement of mainly imported shrimp hydrolysate (5%) and salmon oil (3%; control diet) with locally produced fish hydrolysate (5%) and oil (3.2%) obtained from fish waste (experimental diet) on systemic inflammation markers, adipokines levels, cardiac function and fecal microbiota of adult dogs.

View Article and Find Full Text PDF

Maximization of Biodiesel production from oil that produced during salmon smoking process with high amount of omega-3 by using homogenous catalyst.

Environ Sci Pollut Res Int

November 2024

Department of Petroleum Refining and Petrochemical Engineering, Faculty of Petroleum and Mining Engineering, Suez University, P.O. Box: 43221, Suez, Egypt.

The escalating global demand for oil, coupled with declining fossil fuel production, prompts the urgent exploration of renewable alternatives. To address this challenge, researchers are actively seeking environmentally friendly fuels like biodiesel. Among potential feedstocks, oil that is produced from salmon smoking process during industry emerges as a promising option.

View Article and Find Full Text PDF

Enzymatic synthesis of vanillyl fatty acid esters from salmon oil in a solvent-free medium.

Food Chem

February 2025

Université de Lorraine, Laboratoire Ingénierie des Biomolécules (LIBio), 2 av. de la Forêt d'Haye, TSA 40602, 54518 Vandoeuvre Cedex, France. Electronic address:

This study hypothesizes that the solvent-free alcoholysis of oil recovered from salmon heads using vanillyl alcohol (VA) and immobilized lipase B can efficiently produce esters with enhanced stability and antioxidant properties. The objective was to investigate the selectivity and resulting ester profile, which may provide nutritional and functional advantages compared to supplementing oil with vanillyl alcohol. After 24 h, nearly complete conversion of vanillyl alcohol was achieved, leading to the production of various esters reflective of the oil's original fatty acid composition.

View Article and Find Full Text PDF

A novel micro-aqueous cold extraction of salmon head oil to reduce lipid oxidation and fishy odor: Comparison with common methods.

Food Chem

January 2025

Shenzhen Key Laboratory of Food Nutrition and Health, College of Chemistry and Environmental Engineering and Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China; State Key Laboratory of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China. Electronic address:

Traditional heat extraction (HE) has a low efficiency (75.2 wt%) and induces lipid oxidation of PUFAs. The novel micro-aqueous cold (<25 °C) extraction (MAE) was applied to extract salmon head oil.

View Article and Find Full Text PDF

Cytokines, chemokines, and interferons are released in response to viral infection with the ultimate aim of viral clearance. However, in SARS-CoV-2 infection, there is an imbalanced immune response, with raised cytokine levels but only a limited interferon response with inefficient viral clearance. Furthermore, the inflammatory response can be exaggerated, which risks both acute and chronic sequelae.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!